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APPROXIMATION BY GENERALIZED BRASS OPERATORS

ZOLTAN FINTA

Abstract. We establish direct and converse theorems for generalized
Brass operators and for parameter dependent Brass - type operators, re-
spectively.

1. Introduction

In the paper [8], D. D. Stancu has introduced and investigated a linear positive
operator L, , : C[0,1] — C0, 1] defined by

(L f)(@) = ; porate) [ =) 1 (B e (BE) ]

where n > 2r > 4 and pp_,i(z) = o*(1 —2)" "% k =0,n—r. The

n
k
operator L, o has been given earlier by H. Brass in [4]. Stancu has established the
convergence of the sequence (L, ,)n>2r, the representation of the remainder in the
approximation formula by means of the second - order divided differences and the
estimate of the order of approximation using the classical moduli of continuity, re-
spectively.

In what follows we give direct and converse theorems for the operator given
above. The converse results will be of Berens - Lorentz type [3] and of strong converse
inequality of type B, in the terminology of [7].

Furthermore, let us consider a new, parameter dependent linear positive op-
erator Ly, . : C[0,1] — C[0, 1] defined by

(L, D) =
) e L = (N

(2)
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where n > 2r and

w _ n—r\. Hfz_ol (z +ia) H?;g_k_l (1-z+ja)
ek k l+a)(1+2a)...(1+(n—1a)

where k = 0,n —r and « > 0 is a parameter which may depend only on the natural
number n. In the case a = 0, LY, is the generalized Brass operator defined by (1).
Similarly to ( 1), we shall prove direct and converse theorems for ( 2 ).

In the next sections we will use the weighted K — functional for f € C]0,1]

defined by

Ka(f,0) = mf{ |f—gll + 6 6°" - ge Wi(e) }, d=0.

Here ¢ : [0,1] — R is an admissible step - weight function of the Ditzian - Totik
modulus [1, pp. 8-9], | -] is the supremum norm on C0,1] and W2 (¢) consists
of all functions g € C|[0, 1] such that g is twice continuously differentiable and ||¢*g”||
is finite. It is well - known that Ky 4(f,d) and w;(f, V/8) are equivalent [1, p. 11,
Theorem 2.1.1 |, where

wg(f,8) = sup sup | f(z + ho(x)) = 2f(2) + f(z — ho(x)) |

0<h<é ztho(x)€(0,1]

is the Ditzian - Totik modulus of smoothness of second order.

2. Direct and converse theorems

Our direct result is

Theorem 1. Let (L )n>2r be defined as in (1), o(x) = /x(1 —z), z €[0,1] and
¢ :[0,1] — R an admissible step -weight function of the Ditzian - Totik modulus with
¢? concave. Then

(Lor D)) = O] < 4 Ko (1,52 E0 )

holds true for x € [0,1] and f € CI0,1].
Proof. By [8, p. 214, Theorem 2.1 | we have L, ,(t —x,2) =0 and

n+r(r—1) ()2

On the other hand, the operator L, , is bounded as follows from

(Lurf)@)] < Tipnr,k<w>'[<1—f>\f<:)! +w\f(’“2’“)\]

k=0

Ln,r((tfx)z,x) = .

A

N

< M-S pacrs@) = 1] (3)
k=0

Now we use [2, p. 398, Theorem 1 ], obtaining the assertion of the theorem.
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APPROXIMATION BY GENERALIZED BRASS OPERATORS

Corollary 1. Let L, ,, ¢ and ¢ be given as in Theorem 1. Then

ntr(r—1) ¢(z)
n ¢()

forx €[0,1] and f € C[0,1], where the constant C depends only on ¢ and .
Proof. It is a direct consequence of Theorem 1 and the equivalence between

— z)? n+r(r— T
Ko (£,752670 - 200) and w2 <f,m.w

(Lo f)(@) = f(2)] < Cwf ( f,

n é(z) |-

In order to prove the next theorems we need some Bernstein type inequalities.
Lemma 1. Let ¢ : [0,1] — R be an admissible step - weight function of the Ditzian
- Totik modulus with ¢* concave, ¢(z) = \/z(1 — z), z € [0,1] and n > 2r > 4. Then
for f e C[0,1]

9* (Lo /) < 4 (n—=7) |I£] (4)
and for smooth functions g € C?[0,1]
l?(Lnrg)Il < Culr) 9", (5)
19*(Lnrg)”l < Ca(r) 679”1, (6)
where C1(r) = 50r% + 34r + 17.
Proof. Let
n—r k
L@ = 3 porale) 1 (L) 2oy
k=0
and
— E+r
(L2ehe) = X povale) 1(20), e
k=0
Then
(Losf)@) = (=) (Ly, @) + = (L7, f)(@), (7)
z € [0,1]. Furthermore, let X/, : C[0,1] — R (i = 1,2) be positive linear func-

tionals defined by AL _, ,(f) = f(£) and A2_, .(f) = f (%%), where k = 0,n—r

n—r,k n
and f € C[0,1]. Then A} _, (1) = X\2_ (1) = 1. Moreover, if IT; denotes the set

n—r,k . _
of all algebraic polynomials of degree at most one then L;, ,(II;) C II; for i = 1,2.
Therefore, by [2, p. 414, Lemma 3 ] we obtain

p(@)* |(Ly, . )" (@) < 2 (n—r) |If] (8)

for z € [0,1], n > 2r and i = 1, 2.
On the other hand, in view of ( 7 ) we have

(Lng )" (@) = =2(Ly . ) (@) +2(L5 . f) (@) + (1= 2) (Ly, . )" (@) +2(L7, . f)" (). (9)
Using [6, p. 305, ( 2.1 ) | we obtain

@ = om0 () s (5)] s
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and

(L2, )@) = (=) kz e B o | )

Hence

(L0 (@) < 5 =r) 1], (10)

an ( 0 ) we obtain
(n=)lfI+ (n=r)Ifl[ + A =2) - 2(n =7 f]]
+a-2(n = r)|fll = 4(n =) £],

p(x)?
=1,2. Then, by (9), (8)
(@) [(Lnsf)" ()] <

which implies ( 4 ).
Furthermore,

o)) -t ) ()
and

X ﬂc((t—nkr)Q) - (W‘ﬂ):[(?’z_nkr%(;)r
: Kf‘ . ”k) (;)Z] < (2r)?- (;)

for n > 2r and k = 0,n —r. Thus, in view of [2, p. 144, Lemma 3 | we have for
g € C?0,1] :

IN

16*(Ly,.-9)" < C'(r) ll6*g” I, (11)
i=1,2, where C’'(r) = 48r* + 32r + 8. By (9 ), we have
¢(@)* - [(Lnrg)" ()| <
< 20(2) (L3 9) (2) = (Lp rg) ()] +
+ (1=2) ¢@) [(Ly9)" @) + 2 ¢(2)” (L7, 19)" ()] (12)

Therefore, in view of ( 11 ), we have to estimate ¢(z)? - |(L? ,.9)'(z) — (L}, .9)" (2)|.
Using Taylor’s formulas

k+1

o ()=o) (S —a) g [T (P ) s a
s ! 5

and

we obtain
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APPROXIMATION BY GENERALIZED BRASS OPERATORS

(Lyrg) () =

e [2))2) )] e

—r—1
k+1
= (n—r) { Z ( - a?) Pn—r—1,(x) +
n—r—1 B kt1

+ ];) Pr—r—1,k(T) /z <k;rl u) ¢"(u) du —
'(z) 1:2: (i—x) Pr—r—1,k(T) —

n—r—1
k

(nrlf Z pnrlk f(?”L?"l)’ fEC[Oal]

then B, _,_1(t —x,2) =0 and therefore

"kl 1 r+1
Z P—r-1k(z) = n_ -

n
k=0

r+1
7_1' 'pnfrfl,k:(x) = - n - T,
k=0

But, if

and

respectively. Thus

(Ly.r9) (z) =
= ("—T)'{ +nzT:1pnr 1 ( /Ikzl (k:l—u> g"(u) du —
- :Ziol Pn—r—1,k(2) / % (z—u) 9" (u) du} (13)

Analogously, we have

(L7.r9) (x) = |
- (n—r).{ nilpnrm /z”ﬁ“ (W—u) q"(u) du

. kz_% Prcr1c(a) / (5 -u) du} "
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Thus (13 ) and ( 14 ) imply

(L7r9) (@) = (Ln,9)'(z) =

n—r—1

- Z pn—r—l,k(x)
k=0

n—r—1

- Z pnfrfl,k(x)
k=0

n—r—1

+ Z pn—r—l,k(x)
k=0

So we have to estimate | [*
399, (5 ) ] we obtain

‘/ t—u) du‘

<
Hence
n—r—1
Z pn—r—l,k(x)
k=0
<
n—r—1
Z pnfrfl,k(x)
k=0
<
n—r—1
Z Pn—r— 1k
<

28

k4r

k+1

ktrtl

n—r—1 z
= 77,*7" {Z pnrlk /
T

<k+r+1

n

/QET (’“Z’" —u) o () du

/gcT (’“::1 —u) ¢ (u) du

k

[

(t —u) g"(u) dul.

) g () du}

- u> g"(u) du —

+

’/t t—u-|g”(u)|du’<‘/t d)(u)u

[

ktrtl

VA

et < U

¢(x)?

k 1
+7r+ u)g%u
n

—r—1

lg>g”|| "
o(x)? P>

k=

A

0

k+r

k+r+1
pn—r—l,k:(x) -

—z)?

) du | <

n

u> ") du | <

(15)

Because ¢? is concave, using [2, p.

g

|

2
_x> 7

929" " k+r o\
W' kzzo pn—r—l,k(ﬂ?) ( n —JU) s
‘/ (’Hl_u> () du| <

929" " k+1

¢($)2 : Z;) pn—r—l,k(x) (n -

k=

;



APPROXIMATION BY GENERALIZED BRASS OPERATORS

and
n—r—1 % k‘ ,
Y Pamrolz) ‘ / ——u g"(u) dUI <
k=0 e A\
lg%g" " k ?
< VIR E Z pnfrfl,k(m) — =X y
oap n

z(l—x)
n—r—1

respectively. Using again B, _,_1(t —x,2) =0 and B, _,_1(t*,7) = 2% +
obtain

we

! k+r+1 2
S pereinle) (s —a) =
k=0

n

£ e [ (22 (5]

n—r—1>2 [2 m(l—x)] n—r—1 <r+1 )
n n—r—1 n n

n
<r+1>2.x2_2<r+1>2.x+(r+1)2+<n—r—1>2.x(l—a:)
n n n n n—r—1
1\? 1 1\? 1 1
1
n

n (n—r—1) n 4 n—r—1
(r+12 1 n 1 J1 5
{ n Jr4 n—r—1 — n |4 (r+1)7+11, (16)
because
r > 2 < 2r < 4
su — : n>2r -
Pln—r-1 2r—r—1 = 7

where n > 2r > 4. With similar arguments we obtain

n—r—1 2
k+r
Z pnfrfl,k:(x) : ( - CL‘) =
k=0

n
(r—l—l 7“)2 (n—r—l>2 z(1l—x)
— e + .
n n n—r—1
I 1 (1,
< (L . < Z.(Z.
- (n) +4 n—-r—1 " n (4 " +1>’ (17)
n—r—1 ka1 2
Z pn—r—l,k(x) - =X =
k=0
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(r—i—l 1)2 <n—r—1>2 z(1l—x)
n n n n—r—1

O e R (Rt I
and
:Ziol Prr—1,k(2) <z =’E>2 =
_ <r+1)2.x2+(n—r—1)2.z(_1—_x)1
() s s o] o
Now, in view of (15), (16), (17, (18 ) and (19 ) we obtain
2 6(x)? - (L2, 9) (x) — (Lnr9) (@) <

n—r

IN

1 1
2 -{2w+1ﬁ+2+2ﬁ+a}~wwﬂ
< (2r+2r49) 0%

Hence, by ( 12 ) a
o(2)? [(Ln,rg)" (x)

< @2+ 204+9)- 0% + A=) C'(r) 99" | + - C'(r) [6°9” |
= (50r% + 34r +17) - |¢%¢"||.

nd (11 ) we get
| <

This means that [|¢?(Ly,-g)"| < Ci(r) - ||¢*g”||, which was to be proved at ( 6 ).
If = ¢ then we obtain ( 5 ), which completes the proof of lemma.

Remark 1. If ¢ = ¢ then, by Corollary 2, we have
n+r(r—1
1Znrf = fIl < Cwj (f, ()> : (20)

n

Thus our first converse theorem will constitute an inverse of ( 20 ). More precisely
we have

Theorem 2. If f € C[0,1] and k > 2r, n > 2r, r > 2 then we have

k+dr—U>7

n+r(r—1 k
Koo (15 ) < s -l e By (120

where the constant C' depends only on r (it can be chosen as (r +1)Cy(r) ).
Proof. By Lemma 3 : (4) — (5) we obtain

30



APPROXIMATION BY GENERALIZED BRASS OPERATORS

KQ,(,O (fv W) S

< I = Bl D gy

< 0 = Lo f I+ PG 2 m (7 )+ 6P L))

< 1= Ll + G fah =)l - gl + ) )

= Lo D R -{4||fg||+cl<r> I}
< ’";1-ﬁ-{4||f—g||+cl<r>-2-’”’",§’;”-Wg"n}
< Moaos = 1+ 0 S fir a4 EEEE g

Now taking infimum over all g € C?[0, 1] we obtain the assertion of our theorem.

Remark 2. By Corollary 2, the implication

n+r(r—1) gp(x))a

wi(fﬁ) = 0(6%) = [(Ln,f)(x) = f(z)] < C ( n o(x)

holds true for a € (0,2).

The converse result of Berens - Lorentz type is included in the next theorem
Theorem 3. Let (L, ,)n>2r be defined by (1 ), o(z)y/z(1—=x), x € [0,1] and
¢ : 0,1 — R an admissible step - weight function of the Ditzian - Totik modulus
with ¢ and p?/¢? concave functions on [0,1]. Then for f € C[0,1] and o € (0,2) the
pointwise approrimation

nr(r—1) so(x))“

(Lnsf)@)— )] < © ( e

x € [0,1] amplies w3(f,8) < C 5%, 5> 0.
Proof. We mention that C' > 0 denotes a constant in this theorem which may
depends only on 7 and it can be different at each occurrence.

The statement of the theorem results from [2, p. 410, Theorem 3 | with slight

modification using Lemma 3. Indeed, because n > 2r > 4 we hqve W < %

Thus /2
(Lnrhe) - s < € (S2) - (w28
1

By Lemma 3 : ( 4 ) we have |¢*(L,, - f)"|| < 4n||f|| for f € C[0,1]. Using ( 6 ) and
step by step the proof of [2, p. 410, Theorem 3 ] we obtain

2
wé(f,t) < C (5“—1—62 wi(f,é)), 0<t<$§
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which yields the assertion of the theorem by the well - known Berens - Lorentz lemma
[3].

To prove the strong converse inequality of type B for L, , we need another
lemmas.

Lemma 2. Let p(z) = y/z(l —x), x € [0,1] and n > 2r > 4. Then for f € C[0,1]

16 (Lo )| < Co n®2|| £ (21)
and for smooth functions g € C?[0,1]
9> (Lnrg)" | < Ca(r)n'”2llp?g"l, (22)

where Cy = /61 +3v/22 4+ 2v2 4+ 11 and C3(r) = 3C"(r) 4+ 3v/2 = 14472 + 961 +
24 4 3v2.
Proof. By (9 ) we have

(Lo f)" (@) = =3(Ly, . )" (@) + 3(L7, . )" (@) + (1 = &) (L, )" () + (L7, )" ().
Then
p(@) - [(Loe /)" (@) < 30(2)*|(Ly o f)" ()] + 3(2)* (L7 . f)" ()]
+ (L= 2)p(@)’|(Ln )" (@)] + z()*|(L7, )" (2)](23)
Using ( 8 ) we obtain

p(@)*|(Ly, )" (@) < 2(n = r)o(@)| ] < (n =) f] (24)

for z € [0,1], n>2r and i=1,2.
Furthermore, by means of the expressions
n
T,.s(x) = Z (k—nz)® ppi(z), n=1,2,..., s=0,1,2,...
k=0

we have the following estimates ( see [6, pp. 303 - 304 | and [7, p.128, Lemma
9.4.41]): Tha(x) =np(x)?, Tha(z) < 11n2p(z)* and T, ¢(z) < 61n3p(z)°, where
z €[1/n,1—1/n] and n > 2. In this case p(z) > \/%, xz € [1/n,1—1/n]. Then, for
the Bernstein polynomials

Bof)@) = 3 pos(a) f<k> fecp.
k=0

n
and for z € [1/n,1 — 1/n] we have

o(x)® - |(Bnf)" ()| =
1 2 k ~ k
=— =) k—n2)’pni(z) —3(1—2x) f =) (k=na)’ppi(z) —
(@) ’,;J (n) Pk s ( ) Pk

n

—Bnz(l—z) —2z(1—xz)+1) Z f (:) (k —nx)pn.i(z) + 2nz(l —2)(1 — 2z)

k=0

< ¢<J;|>|3 A T@)'? + 31 = 20 (T 4(2))"?

n
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APPROXIMATION BY GENERALIZED BRASS OPERATORS
+ 3np(e)? = 20(2)? + 1] (T2(@)"/? + 20]1 = 20] - (2)?}
A VBT 2p(2)* + 3V Tng(@)* (3np(e)? + D 2p(x) + 2np()?}
<71 {V61n¥/2 4+ 3v/2203/2 4 508/2 4 2202}

= (V6T +3v22 15+ 2v2) ¥ £, (25)

On the other hand, by [1, p. 125, (9.4.3 ) | we have for x € [0,1/n|U[1—1/n, 1]
and f € C0,1]:

171
= ()

n—3

A B D] < 0 =Y -2) 3 () e (M) -
+ 3f(’“§1> f(fj)] pn_g,m)\s 27l (0)

Therefore, in view of ( 25 ) and ( 26 ) we get

e(@)®|(Buf)" ()] < (V61 +3V22+2v2+5)n"|f| (27)
for f € C[0,1] and z € [0, 1].
Moreover, (L, rf)(x) (Bu-rgn)(x) and (L ,.f)(z) = (Bn-rg3)(), where

gr(@) = f (=L 2), v e[0,1] and g2(z) = f (=L -z + L), z € [0,1], respectively.
Then, by ( 27 ) we obtain

p(@)*[(Ly, )" (@) < (V61+3V22+2v2+ 50| gyl
< (V61 +3vV22 +2vV2 4 5)n%2||f||

and

(V61 +3v/22 + 2v2 + 5)n%/2|| g2
(V61 + 3v/22 + 3v2 + 5)n®/2||f||.

()*|(Ly, )" ()]

AN

Hence, by ( 23 ) and ( 24 ) we have

¢(2)°|(Lny )" ()| 6nfI| + (V61 + 3v22 + 2v2 + 5)n* 2| f|
Con®||f]],

IN A

which was to be proved.
For (22 ) we use [7, p. 87, Lemma 8.4 | :

I (Bag) "l < —sn 2l
Hence, by ( 23 ), replacing f by g, and ( 11 ) with ¢ = ¢ we obtain
¢(2)°|(Ln,rg)" ()] <
¢(2)°|(Bn—rgp)" ()] + z - o(2)*[(Bp-rgy)" (z)]

3
(n =) 0% (g0)" Il + Wik Y210 ()|

<3C'(n)lle?g"ll + (1 -
<30yl + (1 — ) -

E\w\&f
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3 n—r\>
<3O+ 1 -2) s = 2 (20 g

3 1/2 (n_r>2 2 1 / 1/2), .2 11
+r-—(Mn-—r Al - < (3C"(r) 4+ 3v2)nY/ .
\/5( ) - le*g"|l < (3C(r) )nllemg" |

Hence ||¢®(Ly.-g)"|| < Cs(r)n'/?||¢?¢"||, which completes the proof of the lemma.
Lemma 3. Let (Ly . )ns>2r be defined by (1), p(z) = /x(1—2), z € [0,1] and
a>0, Eypn = {z0 €1[0,1] | 2o £an"2p(zg) € [0,1]},

T A |t — 2ol = Mn~'/2p(zo)
IM,n,zo\l) = 0, otherwise.

Then (L »gnn.z ) (T0)/(nLp(20)?) — 0 as M — oo uniformly inn and xg € Eq .
Proof. Simple computations show, if g € E, , then xy € [#2“2, 1-— #2@2 . This

means that a
Vnp(zo) > 1+a2 (28)
Therefore, by ( 7 ) we obtain
n
' Ln rdm,n,x =
90(350)2 ( ;r9m,n, 0) (1'0)
=" _. (1—x0) Z Pr—rk(Z0) k_ Zo : +
¢(z0)? ’ n

E o >Mn=1/2p(z0)

k+r 2
+ xo Z pnfr,k($0) ( o $0>

Etr
w0

n — 1 n k 4
< (1= i L
>~ QO(:L'O)2 {( 1‘0) I;O M2 @(xo)z Pn ,k(io) (TL IO) +
— 1 n k+r 4
+ x0 ;O Vel W 'pn—r,k(xO) < n Io) }

1 n 2 1 rTo
= e ((p(I ) : {(1 — T0) [114 'Tn—r,4($0) -4 Y 'Tn—r,S(CCO) +
( 2
+6

Lo P R

>Mn=1/2(0)

0)?
rZ0)
n4 : Tnf'r‘,2(x0) + ’I’L4

_4. 7”(17;11'0) . Tn—r,S(xO) +6- (T(l ;41'0))2 . Tn—T,Q(l'()) + (’]"(1 ;41'0))4:| }
2
= # ' (<p(;())2) ' {7114 “To—ra(zo) — 8- % - o(w0)* - Tn—r3(x0) +
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r2 rt
+6- v co(x0)? - Tr—ra(o) + v - (o) (1 — 390(550)2)} .

Hence, by [1, p. 128, Lemma 9.4.4 ] and ( 28 ) we obtain

o577+ (Lnrgdingz,) (20) <

1 n 2 ) . , e
< o — Y _ .
oM (‘P(%)Q) n4 {(n )% p(w0)" + 8rp(z0)”  (Th-r,6(70)) +
6% (o) (n — r)p(w0)” + ' p(a0) (1 + Be(0)*)}

© ! 2 4 2.3/2 5
< 3w (M) s (e )+

C

+ 6T2’nw(x0)4+r490($0)2+3T4g0(1’0)4} < o S0

as M — oco. ( Here C' > 0 denotes an absolute constant which can depends only on
r and it can be different at each occurrence ).
Remark 3. Forn > 2r we have
L Vntrir—1) _ \/r+1 1
N/ n - 2n  /n

Therefore, by Corollary 2 we have for ¢ = ¢ the following direct result:

|Lurf — fl < C w2 (f, (20)

1
)
The constant C may depends only on p, ¢ and r.

Thus the next theorem will constitute an inverse of type B for (129 ) :
Theorem 4. Let (Ly,)n>2- be given by (1 ) and ¢(z) = \/z(1—1x), € [0,1].
Then there exist two constant K and C ( C' may depends only on ¢, ¢ andr ) such
that for all f € C[0,1] and m,n with M > Kn we have

(1) £ 2 (ULunf =11 + Mnas = 11 (30)

Proof. Using (3 ), Lemma3: (4)-(5), Lemma6: (21)-(22)and Lemma 7,
we obtain ( 30 ) in view of [9, p. 372, Theorem 1 ].

3. A new generalized Brass operator

In this section we establish direct and converse theorems for the operators
defined by ( 2 ).

Theorem 5. Let (L) . )n>2r be given by (2 ) and ¢(x) = /x(1—=z), v € [0,1].
Then there exists an absolute constant C' > 0 such that for all f € C[0,1] we have

| Lnof — fl| < Cwi(f, \/lia,<n+rr(;—l)+a>>
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Proof. By [5, p. 1180, Lemma 3.1 ] we have for & > 0 and « € (0, 1) the following
identity

[ n—r B(za '+ k(1-z)a ™t +n—r—k)
Wy (T, 00) = ( f ) : Bloa T 070 :

Consequently, L;; . f can be represented by means of the operator ( 1), as follows

LN = g 0T Lo @ 6

On the other hand, by ( 31 ) and [8, p. 214, Theorem 2.1 | we have

Ly (u—z,2) =

1 b, -
= . te 11 —t)= 1L, (u—=xt)dt
B(za=t (1 —x)a™ 1) /0 ( ) rlu=a.1)

1
- o ETY A== (LS (u—tt) + Ly, (E— dt
B(za=, (1 —x)a 1) /0 ( ) [Ep(u =t + Lot = 2,0)]

" B(za ! (ll_x)oﬂ) /0 51— T (t—w) dt = 0 (32)
and
L2, ((u— o)) =
! x
B B (xorl (]i — aj)a—l) ' A tﬁil(]‘ - t) L Ln,r((u - 1’)2,15) dt
" Bz, (11 —z)al) /0 B L= Lo (= 1)%0) +
+ 2t—2)Lp,(u—tt)+ (t—2z)%] dt
= B(xoz‘l (11 — x)a—l) ./0 t%—l(l _t)lgw_l . W -t(l _ t) dt -+
T B (za—1 (11 —z)a~l) ./0 N
= 1ia'(n+rég_l)+a)”(x)2 (33)
Furthermore, by ( 3)
D@ < o i—ggam (DOl e < 1.
So
Lo I < [l (34)

for all f € C0,1]. Now, using ( 32 ), ( 33 ), ( 34 ) and the standard method [1,
Chap. 9 |, we obtain the assertion of the theorem.
In what follows we shall use some lemmas. These are the following;:
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Lemma 4. For (L, ,)n>2r, ¢(x) = /2(1 — ), z € [0,1] and f € C[0,1] we have

1
E'llwz(Ln,rf)"H < Co (ILnof = fII + ILgnef = FI),

where Cy > 0 is an absolute constant.
Proof. The announced inequality is the estimate ( 14 ) for m = Kn given in [9, p.
373 |, using the estimates (4 ), (5), (21 ), ( 22 ) and Lemma 7.

Lemma 5. For (L, )n>2r, @(x) = /(1 — ), x € [0,1] and f € C[0,1] we have

(6%
: ||@2(Ln,rf)//”'

Ly f—1L
128, = Loe Sl < 1o

Proof. By ( 31 ) and Taylor’s formula :

Lr (1) = (Lo £)(@) + (t — ) (Lo ) () + / (t — u) (L )" () du

we have
1 e

L) = Do) = Fremgemay ) =05
[(t =) e £ @)+ [ (=) E ) d]

{ / t (t = w)(Lnr )" (u) du} dt. (35)
Hence, by [1, p. 140, Lemma 9.6.1m ] we obtain
(BN~ e = ooy ), -0
‘/ |t1__ui cu(l =) [(Ln )" (w)] du | dt
" )
iy
m dt = ¢ (Lasf)" Vert,

which was to be proved.
We have the following result:

Theorem 6. Let (Lj, T)n>2r be given by (2 ) and p(z) = /z(1 —x), x € [0,1]. If
a=an) and (o/(14+a)) - n(Co+Co-Ci(r)+4K) < & < 1 then
(I =&) ([Lnrf = I+ I Lgnef = FI) < LG f = A+ 1 L%enn f = Sl <
< (4 a) (I Lnrf = fIl+ ILrnef = fID
37



ZOLTAN FINTA

for all f € C[0,1]. Moreover, there exists an absolute constant C > 0 such that for
all f € C[0,1] we have

_ 1
Va2 (£02) < IS = A Mnnd = £ < C 2 (1
Proof. We have, in view of Lemma 11 :
L5 f — f||+||LKnrf_fH <
< ||L o = Log fll + | Lo f = fl + 1 Lgp o f — Licng f — fIl + | Lgcn f — £l

1+ N L )1l + L f ~ f\|+ﬁ l9? (L )"l + | Licn,r f = £

Using Lemma 3 : (4 ) - ( 5 ), we obtain
H‘P2(LKn,rf)NH < H‘P2<LKn,r(f — Ly, )"l + H‘PQ(LKR,T(Ln,Tf))NH
< AKn||f — Loy fll + C1(r) - 0% (Lor )|l

)

IN

Thus
o
Ly f = fll + 1 Lgp f — fII < Toa’ (14 C(r) - l*(Ln )1 +

«
4K+ 1) Ly f — Licnrf — fl-
+(1+a n+) 1L f = I+ 1 L f = 1

Hence, by Lemma 10 we obtain

nCo - (L+C1(r) - (NLnpf = fll+ 1 Lcnrf = fII) +

(nCo(1 4+ Cr(r >>+4K>} Nt — Il +

1+
+ ( “4Kn + 1) NLprf = Fll + |1 Lcnrf — £l

’I’LC()(l + Cl( )):| . ||LKn,rf - f”

1+a (HLan W+ Lgnef = fII) (36)

On the other hand
| Ly f = fll + I Licnrf — fl] <

é ||La f - Ln rf” + ||L%,1‘f - f” + ||L?(n rf - LKn rf” + ||L%n rf - f”
< 1+ N (Lo )1+ 1 L5 f — f\|+7 19*(Licns )| + 1 LGp f = FII-

Using Lemma 10 and Lemma 3 : (4 ) - ( 5 ), we obtain
HLn,rf - fH + ”Lkn,rf - f” <

+
<

A

< o= 100 (Lo f = Fll+ Lo f = FID) + 125, = Il +
= (AR Loy f = fll+ CLOIAEnn D)) + [ L f = ]
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SNE o f = P Lo f = T+ T - (0O Co(1) 4+ 4K ) - | Lo f = | +

+L 'n,CO(]. + 01(7')) . ||LKn,rf - f“

1+«
Hence

(=) (nrf = fll + 1 Lrenrf = fI1) < MLg o f = I+ 1 L%eprf = £l (37)
In conclusion ( 36 ) and ( 37 ) imply the assertion of the theorem. Moreover,
by (29 ) and ( 30 ), we obtain the second statement of the theorem using the first
one.
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