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ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH
NEGATIVE COEFFICIENTS. II
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Abstract. The object of the present paper is to obtain modified
Hadamard products (convolutions) of several functions belonging to the
classes T ∗(p, α) and C(p, α) consisting of analytic and p-valent functions
with negative coefficients. We also obtain class preserving integral operator
of the form

F (z) =
c + p

zc

∫ z

0

tc−1 f(t) dt, c > −p

for the classes T ∗(p, α) and C(p, α) . Conversely, when F belongs to
T ∗(p, α) and C(p, α) , radii of p-valence of f defined by the above equation
are obtained.

1. Introduction

Let S(p) denote the class of functions of the form

f(z) = zp +
∞∑

n=1

ap+nzp+n, (p ∈ N = {1, 2, · · · })

which are analytic and p-valent in the unit disc U = {z : |z| < 1}. A function f of
S(p) is called p-valent starlike of order α if f satisfies the following conditions

Re
{

zf ′(z)
f(z)

}
> α, z ∈ U (1.1)

and ∫ 2π

0

Re
{

zf ′(z)
f(z)

}
dθ = 2pπ

for 0 ≤ α < p, p ∈ N and z ∈ U. We denote by S∗(p, α) the class of all p-valent
starlike functions of order α. The class S∗(p, α) was studied by Patil and Thakare
[3]. Further a function f of S(p) is called p-valent convex of order α if f satisfies the
following conditions

Re
{

1 +
zf ′′(z)
f ′(z)

}
> α, z ∈ U (1.2)
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and ∫ 2π

0

Re
{

1 +
zf ′′(z)
f ′(z)

}
dθ = 2pπ

for 0 ≤ α < p, p ∈ N and z ∈ U. We denote by K(p, α) the class of all p-valent
convex functions of order α.

It follows from (1.1) and (1.2) that

f(z) ∈ K(p, α) if and only if zf ′(z)/p ∈ S∗(p, α), 0 ≤ α < p.

Let T (p) denote the subclass of S(p) consisting of functions of the form

f(z) = zp −
∞∑

n=1

ap+nzp+n (ap+n ≥ 0; p, n ∈ N). (1.3)

We denote by T ∗(p, α) and C(p, α) the classes obtained by taking intersections, respec-
tively, of the classes S∗(p, α) and K(p, α) with T (p), that is T ∗(p, α) = S∗(p, α)∩T (p)
and C(p, α) = K(p, α) ∩ T (p).

The classes T ∗(p, α) and C(p, α) were studied by Owa [2].
In order to prove our results for functions belonging to the classes T ∗(p, α)

and C(p, α) we shall require the following lemmas given by Owa [2] and Aouf [1].

Lemma 1.1. Let the function f be defined by (1.3); then f ∈ T ∗(p, α) if and only
if

∞∑
n=1

(p + n− α)ap+n ≤ p− α.

The result is sharp for the functions

f(z) = zp − p− α

p + n− α
zp+n, n ∈ N. (1.4)

Lemma 1.2. Let the function f be defined by (1.3); then f ∈ C(p, α) if and only if
∞∑

n=1

(p + n)(p + n− α) ap+n ≤ p(p− α).

The result is sharp for the functions

f(z) = zp − p(p− α)
(p + n)(p + n− α)

zp+n, n ∈ N.

2. Modified Hadamard product

Let the functions fi be defined, for i ∈ {1, 2, 3}, by

fi(z) = zp −
∞∑

n=1

ap+n,i zp+n (ap+n,i ≥ 0). (2.1)

The modified Hadamard product (convolution) of f1 and f2 is defined here by

f1 ∗ f2(z) = zp −
∞∑

n=1

ap+n,1 ap+n,2 zp+n.
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Theorem 2.1. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
T ∗(p, α). Then f1 ∗ f2(z) ∈ T ∗(p, β(p, α)), where

β(p, α) = p− (p− α)2

(p + 1− α)2 − (p− α)2
. (2.2)

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [4],

we need to find the largest β = β(p, α) such that
∞∑

n=1

p + n− β

p− β
ap+n,1 ap+n,2 ≤ 1.

Since
∞∑

n=1

p + n− α

p− α
ap+n,1 ≤ 1 and

∞∑
n=1

p + n− α

p− α
ap+n,2 ≤ 1,

by the Cauchy-Schwarz inequality we have
∞∑

n=1

p + n− α

p− α

√
ap+n,1 ap+n,2 ≤ 1.

Thus it is sufficient to show that
p + n− β

p− β
ap+n,1 ap+n,2 ≤

p + n− α

p− α

√
ap+n,1 ap+n,2 (n ≥ 1),

that is
√

ap+n,1 ap+n,2 ≤
(p− β)(p + n− α)
(p− α)(p + n− β)

.

Note that
√

ap+n,1 ap+n,2 ≤
p− α

p + n− α
(n ≥ 1).

Consequently, we need only to prove that

p− α

p + n− α
≤ (p− β)(p + n− α)

(p− α)(p + n− β)
(n ≥ 1)

or, equivalently, that

β ≤ p− n (p− α)2

(p + n− α)2 − (p− α)2
, (n ≥ 1).

Since

Ψ(n) = p− n (p− α)2

(p + n− α)2 − (p− α)2
, (n ≥ 1), (2.3)

is an increasing function of n (n ≥ 1), letting n = 1 in (2.3) we obtain

β ≤ Ψ(1) = p− (p− α)2

(p + 1− α)2 − (p− α)2
,

which completes the proof of Theorem 1.
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Finally, by taking the functions

fi(z) = zp − p− α

p + 1− α
zp+1, (i ∈ {1, 2}), (2.4)

we can see that the result is sharp.

In a similar manner, with the aid of Lemma 1.2, we can prove
Theorem 2.2. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
C(p, α). Then f1 ∗ f2(z) ∈ C(p, β(p, α)), where

β(p, α) = p− (p− α)2

(p + 1− α)2(p + 1)/p− (p− α)2
.

The result is sharp for the functions

fi(z) = zp − p (p− α)
(p + 1)(p + 1− α)

zp+1, i ∈ {1, 2}. (2.5)

Theorem 2.3. Let the function f1 defined by (2.1) be in the class T ∗(p, α) and let the
function f2 defined by (2.1) be in the class T ∗(p, γ); then f1 ∗f2(z) ∈ T ∗(p, ζ(p, α, γ)),
where

ζ(p, α, γ) = p− (p− α)(p− γ)
(p + 1− α)(p + 1− γ)− (p− α)(p− γ)

.

The result is sharp.
Proof. Proceeding as in the proof of Theorem 2.1, we get

ζ ≤ Φ(n) = p− n (p− α)(p− γ)
(p + n− α)(p + n− γ)− (p− α)(p− γ)

. (2.6)

Since the function Φ(n) is an increasing function of n (n ≥ 1), letting n = 1 in (2.6)
we obtain

ζ ≤ Φ(1) = p− (p− α)(p− γ)
(p + 1− α)(p + 1− γ)− (p− α)(p− γ)

,

which evidently proves Theorem 2.3.
Further, taking

f1(z) = zp − p− α

p + 1− α
zp+1 and f2(z) = zp − p− γ

p + 1− γ
zp+1. (2.7)

Theorem 2.4. Let the function f1 defined by (2.1) be in the class C(p, α) and the
function f2 defined by (2.1) be in the class C(p, γ); then f1 ∗ f2(z) ∈ C(p, ζ(p, α, γ)),
where

ζ(p, α, γ) = p− (p− α)(p− γ)
(p + 1− α)(p + 1− γ)(p + 1)/p− (p− α)(p− γ)

.

The result is sharp for the functions

f1(z) = zp − p(p− α)
(p + 1)(p + 1− α)

zp+1 and f2(z) = zp − p(p− γ)
(p + 1− γ)(p + 1)

zp+1.
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Corollary 2.1. Let the functions fi, i ∈ {1, 2, 3}), defined by (2.1) be in the class
T ∗(p, α); then f1 ∗ f2 ∗ f3(z) ∈ T ∗(p, η(p, α)), where

η(p, α) = p− (p− α)3

(p + 1− α)3 − (p− α)3
.

The result is the best possible for the functions

fi(z) = zp − p− α

p + 1− α
zp+1, i ∈ {1, 2, 3}).

Proof. From Theorem 2.1 we have f1 ∗ f2(z) ∈ T ∗(p, β(p, α)), where β is
given by (2.2). We use now Theorem 2.3 and we get f1 ∗ f2 ∗ f3(z) ∈ T ∗(p, η(p, α)),
where

η(p, α) = p− (p− α)(p− β)
(p + 1− α)(p + 1− β)− (p− α)(p− β)

= p− (p− α)3

(p + 1− α)3 − (p− α)3
.

This completes the proof of Corollary 2.1.
Corollary 2.2. Let the functions fi, i ∈ {1, 2, 3}), defined by (2.1) be in the class
C(p, α); then f1 ∗ f2 ∗ f3(z) ∈ C(p, η(p, α)), where

η(p, α) = p− (p− α)3

(p + 1− α)3(p + 1)2/p2 − (p− α)3
.

The result is the best possible for the functions

fi(z) = zp − p(p− α)
(p + 1− α)(p + 1)

zp+1, i ∈ {1, 2, 3}).

Theorem 2.5. Let the function f1 defined by (2.1) be in the class T ∗(p, α) and the
function f2 defined by (2.1) be in the class T ∗(p, γ); then f1 ∗ f2(z) ∈ C(p, β(p, α, γ)),
where

β(p, α, γ) = p− (p + 1)(p− α)(p− γ)
p(p + 1− α)(p + 1− γ)− (p + 1)(p− α)(p− γ)

.

The result is sharp.

Proof. Since f1 ∈ T ∗(p, α) and f2 ∈ T ∗(p, γ), we have
∞∑

n=1

(p + n− α) ap+n,1 ≤ p− α and
∞∑

n=1

(p + n− γ) ap+n,2 ≤ p− γ.

It follows that
∞∑

n=1

(p + n− α)(p + n− γ) ap+n,1ap+n,2 ≤ (p− α)(p− γ).

We want to find the largest β = β(p, α, γ) such that
∞∑

n=1

(p + n− β)(p + n) ap+n,1ap+n,2 ≤ p(p− β).
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This will be certainly satisfied if
(p + n− β)(p + n)

p(p− β)
≤ (p + n− α)(p + n− γ)

(p− α)(p− γ)
(n ≥ 1),

or

β ≤ p− n(p + n)(p− α)(p− γ)
p(p + n− α)(p + n− γ)− (p + n)(p− α)(p− γ)

(n ≥ 1).

Since

K(n) = p− n(p + n)(p− α)(p− γ)
p(p + n− α)(p + n− γ)− (p + n)(p− α)(p− γ)

(n ≥ 1) (2.8)

is an increasing function of n (n ≥ 1), letting n = 1 in (2.8) we obtain

β ≤ K(1) = p− (p + 1)(p− α)(p− γ)
p(p + 1− α)(p + 1− γ)− (p + 1)(p− α)(p− γ)

,

and so β(p, α, γ) = K(1). Finally, the result is sharp for the functions f1 and f2

defined by (2.7).
Theorem 2.6. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
T ∗(p, α); then the function

h(z) = zp −
∞∑

n=1

(
a2

p+n,1 + a2
p+n,2

)
zp+n (2.9)

belongs to the class T ∗(p, δ(p, α)), where

δ(p, α) = p− 2(p− α)2

(p + 1− α)2 − 2(p− α)2
.

The result is sharp.
Proof. By virtue of Lemma 1.1, we obtain

∞∑
n=1

{
p + n− α

p− α

}2

a2
p+n,1 ≤

{ ∞∑
n=1

p + n− α

p− α
ap+n,1

}2

≤ 1 (2.10)

and
∞∑

n=1

{
p + n− α

p− α

}2

a2
p+n,2 ≤

{ ∞∑
n=1

p + n− α

p− α
ap+n,2

}2

≤ 1. (2.11)

It follows from (2.10) and (2.11) that
∞∑

n=1

1
2

{
p + n− α

p− α

}2 (
a2

p+n,1 + a2
p+n,2

)
≤ 1.

Therefore, we need to find the largest δ such that

p + n− δ

p− δ
≤ 1

2

{
p + n− α

p− α

}2

,

that is

δ ≤ p− 2n(p− α)2

(p + n− α)2 − 2(p− α)2
(n ≥ 1).
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ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. II

Since

D(n) = p− 2n(p− α)2

(p + n− α)2 − 2(p− α)2
(n ≥ 1)

is an increasing function of n (n ≥ 1), we readily have

δ ≤ D(1) = p− 2(p− α)2

(p + 1− α)2 − 2(p− α)2
.

The result is sharp for the functions fi, i ∈ {1, 2} given by (2.4).
Theorem 2.7. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
C(p, α); then the function h(z) defined by (2.9) belongs to the class C(p, δ(p, α)),
where

δ(p, α) = p− 2p(p− α)2

(p + 1)(p + 1− α)2 − 2p(p− α)2
.

The result is sharp for the functions fi, i ∈ {1, 2} defined by (2.5).

3. Integral operators

Theorem 3.1. Let the function f defined by (1.3) be in the class T ∗(p, α) and let
d be a real number such that d > −p; then the function F defined by

F (z) =
d + p

zd

∫ z

0

td−1f(t) dt (3.1)

also belongs to the class T ∗(p, α).
Proof. From the representation of F it follows that

F (z) = zp −
∞∑

n=1

bp+nzp+n, where bp+n =
d + p

d + p + n
ap+n.

Therefore
∞∑

n=1

(p + n− α)bp+n =
∞∑

n=1

(p + n− α)
d + p

d + p + n
ap+n ≤

∞∑
n=1

(p + n− α)ap+n ≤ p− α,

since f ∈ T ∗(p, α). Hence, by Lemma 1.1, F ∈ T ∗(p, α).

Putting d = 1− p in Theorem 3.1 we get the following corollary.
Corollary 3.1. Let the function f defined by (1.3) be in the class T ∗(p, α) and let
F be defined by

F (z) =
1

z1−p

∫ z

0

f(t)
tp

dt;

then F ∈ T ∗(p, α).
Theorem 3.2. Let d be a real number such that d > −p. If F ∈ T ∗(p, α), then the
function f defined by (3.1) is p-valent in |z| < R∗

p, where

R∗
p = inf

n

[
p(p + n− α)(d + p)

(p + n)(p− α)(d + p + n)

]1/n

.

The result is sharp.
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Proof. Let F (z) = zp −
∑∞

n=1 ap+nzp+n (ap+n ≥ 0). It follows from (3.1)
that

f(z) =
z1−d

(
zdF (z)

)′
d + p

= zp −
∞∑

n=1

d + p + n

d + p
ap+nzp+n.

To prove the result it suffices to show that∣∣∣∣f ′(z)
zp−1

− p

∣∣∣∣ ≤ p for |z| < R∗
p.

Now∣∣∣∣f ′(z)
zp−1

− p

∣∣∣∣ =

∣∣∣∣∣−
∞∑

n=1

(p + n)
d + p + n

d + p
ap+nzn

∣∣∣∣∣ ≤
∞∑

n=1

(p + n)
d + p + n

d + p
ap+n |z|n.

Thus |f ′(z)/zp−1 − p| ≤ p if
∞∑

n=1

p + n

p

d + p + n

d + p
ap+n |z|n ≤ 1. (3.2)

But Lemma 1.1 confirm that
∞∑

n=1

p + n− α

p− α
ap+n ≤ 1.

Thus (3.2) will be satisfied if

(p + n)(d + p + n)
p(d + p)

|z|n ≤ p + n− α

p− α
(n ≥ 1)

or if

|z| ≤
[

p(p + n− α)(d + p)
(p + n)(p− α)(d + p + n)

]1/n

(n ≥ 1). (3.3)

The required result follows now from (3.3). The result is sharp because the functions

f(z) = zp − (p− α)(d + p + n)
(p + n− α)(d + p)

zp+n (n ≥ 1)

are defined by (3.1) when F are given by (1.4).

In a similar manner, with the aid of Lemma 1.2, we can prove the following
theorem.
Theorem 3.3. Let the function f defined by (1.3) be in the class C(p, α) and let d
be a real number such that d > −p. Then the function F defined by (3.1) also belongs
to the class C(p, α).
Theorem 3.4. Let d be a real number such that d > −p. If F ∈ C(p, α), then the
function f defined by (3.1) is p-valent in |z| < R∗∗

p , where

R∗∗
p = inf

n

[
(p + n− α)(d + p)
(p− α)(d + p + n)

]1/n

.
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The result is sharp for the functions

f(z) = zp − p(p− α)(d + p + n)
(p + n)(p + n− α)(d + p)

zp+n (n ≥ 1).
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