STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 1, March 2004

ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. II

G. S. SÅLÅGEAN AND H. M. HOSSEN AND M. K. AOUF

Abstract. The object of the present paper is to obtain modified Hadamard products (convolutions) of several functions belonging to the classes $T^*(p, \alpha)$ and $C(p, \alpha)$ consisting of analytic and *p*-valent functions with negative coefficients. We also obtain class preserving integral operator of the form

$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt, \ c > -p$$

for the classes $T^*(p, \alpha)$ and $C(p, \alpha)$. Conversely, when F belongs to $T^*(p, \alpha)$ and $C(p, \alpha)$, radii of *p*-valence of *f* defined by the above equation are obtained.

1. Introduction

Let S(p) denote the class of functions of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}, \ (p \in \mathbb{N} = \{1, 2, \dots\})$$

which are analytic and p-valent in the unit disc $U = \{z : |z| < 1\}$. A function f of S(p) is called p-valent starlike of order α if f satisfies the following conditions

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, \ z \in \mathcal{U}$$

$$(1.1)$$

and

$$\int_0^{2\pi} \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} d\theta = 2p\pi$$

for $0 \leq \alpha < p$, $p \in \mathbb{N}$ and $z \in U$. We denote by $S^*(p, \alpha)$ the class of all *p*-valent starlike functions of order α . The class $S^*(p, \alpha)$ was studied by Patil and Thakare [3]. Further a function f of S(p) is called *p*-valent convex of order α if f satisfies the following conditions

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha, \ z \in \operatorname{U}$$

$$(1.2)$$

Received by the editors: 17.03.2004.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

 $Key\ words\ and\ phrases.\ analytic,\ negative\ coefficients,\ p\-valent,\ starlike,\ convolution.$

and

$$\int_{0}^{2\pi} \operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} d\theta = 2p\pi$$

for $0 \le \alpha < p, p \in \mathbb{N}$ and $z \in U$. We denote by $K(p, \alpha)$ the class of all *p*-valent convex functions of order α .

It follows from (1.1) and (1.2) that

$$f(z) \in K(p, \alpha)$$
 if and only if $zf'(z)/p \in S^*(p, \alpha)$, $0 \le \alpha < p$.

Let T(p) denote the subclass of S(p) consisting of functions of the form

$$f(z) = z^p - \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad (a_{p+n} \ge 0; \ p, \ n \in \mathbb{N}).$$
(1.3)

We denote by $T^*(p, \alpha)$ and $C(p, \alpha)$ the classes obtained by taking intersections, respectively, of the classes $S^*(p, \alpha)$ and $K(p, \alpha)$ with T(p), that is $T^*(p, \alpha) = S^*(p, \alpha) \cap T(p)$ and $C(p, \alpha) = K(p, \alpha) \cap T(p)$.

The classes $T^*(p, \alpha)$ and $C(p, \alpha)$ were studied by Owa [2].

In order to prove our results for functions belonging to the classes $T^*(p, \alpha)$ and $C(p, \alpha)$ we shall require the following lemmas given by Owa [2] and Aouf [1].

Lemma 1.1. Let the function f be defined by (1.3); then $f \in T^*(p, \alpha)$ if and only if

$$\sum_{n=1}^{\infty} (p+n-\alpha)a_{p+n} \le p-\alpha.$$

The result is sharp for the functions

$$f(z) = z^p - \frac{p - \alpha}{p + n - \alpha} z^{p + n}, \quad n \in \mathbb{N}.$$
(1.4)

Lemma 1.2. Let the function f be defined by (1.3); then $f \in C(p, \alpha)$ if and only if

$$\sum_{n=1}^{\infty} (p+n)(p+n-\alpha) a_{p+n} \le p(p-\alpha).$$

The result is sharp for the functions

$$f(z) = z^{p} - \frac{p(p-\alpha)}{(p+n)(p+n-\alpha)} z^{p+n}, \quad n \in \mathbb{N}.$$

2. Modified Hadamard product

Let the functions f_i be defined, for $i \in \{1, 2, 3\}$, by

$$f_i(z) = z^p - \sum_{n=1}^{\infty} a_{p+n,i} \, z^{p+n} \ (a_{p+n,i} \ge 0).$$
(2.1)

The modified Hadamard product (convolution) of f_1 and f_2 is defined here by

$$f_1 * f_2(z) = z^p - \sum_{n=1}^{\infty} a_{p+n,1} a_{p+n,2} z^{p+n}.$$

ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. II

Theorem 2.1. Let the functions f_i , $i \in \{1, 2\}$, defined by (2.1) be in the class $T^*(p, \alpha)$. Then $f_1 * f_2(z) \in T^*(p, \beta(p, \alpha))$, where

$$\beta(p,\alpha) = p - \frac{(p-\alpha)^2}{(p+1-\alpha)^2 - (p-\alpha)^2}.$$
(2.2)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [4], we need to find the largest $\beta = \beta(p, \alpha)$ such that

$$\sum_{n=1}^{\infty} \frac{p+n-\beta}{p-\beta} \, a_{p+n,1} \, a_{p+n,2} \leq 1.$$

Since

$$\sum_{n=1}^{\infty} \frac{p+n-\alpha}{p-\alpha} a_{p+n,1} \le 1 \text{ and } \sum_{n=1}^{\infty} \frac{p+n-\alpha}{p-\alpha} a_{p+n,2} \le 1,$$

by the Cauchy-Schwarz inequality we have

$$\sum_{n=1}^{\infty} \frac{p+n-\alpha}{p-\alpha} \sqrt{a_{p+n,1} a_{p+n,2}} \le 1.$$

Thus it is sufficient to show that

$$\frac{p+n-\beta}{p-\beta} \, a_{p+n,1} \, a_{p+n,2} \le \frac{p+n-\alpha}{p-\alpha} \, \sqrt{a_{p+n,1} \, a_{p+n,2}} \quad (n \ge 1),$$

that is

$$\sqrt{a_{p+n,1} a_{p+n,2}} \le \frac{(p-\beta)(p+n-\alpha)}{(p-\alpha)(p+n-\beta)}.$$

Note that

$$\sqrt{a_{p+n,1} a_{p+n,2}} \le \frac{p-\alpha}{p+n-\alpha} \quad (n \ge 1).$$

Consequently, we need only to prove that

$$\frac{p-\alpha}{p+n-\alpha} \le \frac{(p-\beta)(p+n-\alpha)}{(p-\alpha)(p+n-\beta)} \quad (n \ge 1)$$

or, equivalently, that

$$\beta \le p - \frac{n \left(p - \alpha\right)^2}{(p + n - \alpha)^2 - (p - \alpha)^2}, \quad (n \ge 1).$$

Since

$$\Psi(n) = p - \frac{n(p-\alpha)^2}{(p+n-\alpha)^2 - (p-\alpha)^2}, \quad (n \ge 1),$$
(2.3)

is an increasing function of $n \ (n \ge 1)$, letting n = 1 in (2.3) we obtain

$$\beta \le \Psi(1) = p - \frac{(p-\alpha)^2}{(p+1-\alpha)^2 - (p-\alpha)^2},$$

which completes the proof of Theorem 1.

G. S. SÅLÅGEAN AND H. M. HOSSEN AND M. K. AOUF

Finally, by taking the functions

$$f_i(z) = z^p - \frac{p - \alpha}{p + 1 - \alpha} z^{p+1}, \quad (i \in \{1, 2\}),$$
(2.4)

we can see that the result is sharp.

In a similar manner, with the aid of Lemma 1.2, we can prove

Theorem 2.2. Let the functions f_i , $i \in \{1, 2\}$, defined by (2.1) be in the class $C(p, \alpha)$. Then $f_1 * f_2(z) \in C(p, \beta(p, \alpha))$, where

$$\beta(p, \alpha) = p - \frac{(p - \alpha)^2}{(p + 1 - \alpha)^2 (p + 1)/p - (p - \alpha)^2}$$

The result is sharp for the functions

$$f_i(z) = z^p - \frac{p(p-\alpha)}{(p+1)(p+1-\alpha)} z^{p+1}, \ i \in \{1, 2\}.$$
(2.5)

Theorem 2.3. Let the function f_1 defined by (2.1) be in the class $T^*(p, \alpha)$ and let the function f_2 defined by (2.1) be in the class $T^*(p, \gamma)$; then $f_1 * f_2(z) \in T^*(p, \zeta(p, \alpha, \gamma))$, where

$$\zeta(p,\alpha,\gamma) = p - \frac{(p-\alpha)(p-\gamma)}{(p+1-\alpha)(p+1-\gamma) - (p-\alpha)(p-\gamma)}.$$

The result is sharp.

Proof. Proceeding as in the proof of Theorem 2.1, we get

$$\zeta \le \Phi(n) = p - \frac{n(p-\alpha)(p-\gamma)}{(p+n-\alpha)(p+n-\gamma) - (p-\alpha)(p-\gamma)}.$$
(2.6)

Since the function $\Phi(n)$ is an increasing function of $n \ (n \ge 1)$, letting n = 1 in (2.6) we obtain

$$\zeta \leq \Phi(1) = p - \frac{(p-\alpha)(p-\gamma)}{(p+1-\alpha)(p+1-\gamma) - (p-\alpha)(p-\gamma)},$$

which evidently proves Theorem 2.3.

Further, taking

$$f_1(z) = z^p - \frac{p - \alpha}{p + 1 - \alpha} z^{p+1}$$
 and $f_2(z) = z^p - \frac{p - \gamma}{p + 1 - \gamma} z^{p+1}$. (2.7)

Theorem 2.4. Let the function f_1 defined by (2.1) be in the class $C(p, \alpha)$ and the function f_2 defined by (2.1) be in the class $C(p, \gamma)$; then $f_1 * f_2(z) \in C(p, \zeta(p, \alpha, \gamma))$, where

$$\zeta(p,\alpha,\gamma) = p - \frac{(p-\alpha)(p-\gamma)}{(p+1-\alpha)(p+1-\gamma)(p+1)/p - (p-\alpha)(p-\gamma)}.$$

The result is sharp for the functions

$$f_1(z) = z^p - \frac{p(p-\alpha)}{(p+1)(p+1-\alpha)} z^{p+1}$$
 and $f_2(z) = z^p - \frac{p(p-\gamma)}{(p+1-\gamma)(p+1)} z^{p+1}$.

ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. II

Corollary 2.1. Let the functions f_i , $i \in \{1, 2, 3\}$, defined by (2.1) be in the class $T^*(p, \alpha)$; then $f_1 * f_2 * f_3(z) \in T^*(p, \eta(p, \alpha))$, where

$$\eta(p, \alpha) = p - \frac{(p - \alpha)^3}{(p + 1 - \alpha)^3 - (p - \alpha)^3}.$$

The result is the best possible for the functions

$$f_i(z) = z^p - \frac{p - \alpha}{p + 1 - \alpha} z^{p+1}, \ i \in \{1, 2, 3\}).$$

Proof. From Theorem 2.1 we have $f_1 * f_2(z) \in T^*(p, \beta(p, \alpha))$, where β is given by (2.2). We use now Theorem 2.3 and we get $f_1 * f_2 * f_3(z) \in T^*(p, \eta(p, \alpha))$, where

$$\eta(p,\alpha) = p - \frac{(p-\alpha)(p-\beta)}{(p+1-\alpha)(p+1-\beta) - (p-\alpha)(p-\beta)} = p - \frac{(p-\alpha)^3}{(p+1-\alpha)^3 - (p-\alpha)^3}.$$

This completes the proof of Corollary 2.1.

Corollary 2.2. Let the functions f_i , $i \in \{1, 2, 3\}$), defined by (2.1) be in the class $C(p, \alpha)$; then $f_1 * f_2 * f_3(z) \in C(p, \eta(p, \alpha))$, where

$$\eta(p,\alpha) = p - \frac{(p-\alpha)^3}{(p+1-\alpha)^3(p+1)^2/p^2 - (p-\alpha)^3}.$$

The result is the best possible for the functions

$$f_i(z) = z^p - \frac{p(p-\alpha)}{(p+1-\alpha)(p+1)} z^{p+1}, \ i \in \{1, 2, 3\}).$$

Theorem 2.5. Let the function f_1 defined by (2.1) be in the class $T^*(p, \alpha)$ and the function f_2 defined by (2.1) be in the class $T^*(p, \gamma)$; then $f_1 * f_2(z) \in C(p, \beta(p, \alpha, \gamma))$, where

$$\beta(p,\alpha,\gamma) = p - \frac{(p+1)(p-\alpha)(p-\gamma)}{p(p+1-\alpha)(p+1-\gamma) - (p+1)(p-\alpha)(p-\gamma)}.$$

The result is sharp.

Proof. Since $f_1 \in T^*(p, \alpha)$ and $f_2 \in T^*(p, \gamma)$, we have

$$\sum_{n=1}^{\infty} (p+n-\alpha) a_{p+n,1} \le p-\alpha \text{ and } \sum_{n=1}^{\infty} (p+n-\gamma) a_{p+n,2} \le p-\gamma.$$

It follows that

$$\sum_{n=1}^{\infty} (p+n-\alpha)(p+n-\gamma) a_{p+n,1} a_{p+n,2} \le (p-\alpha)(p-\gamma).$$

We want to find the largest $\beta = \beta(p, \alpha, \gamma)$ such that

$$\sum_{n=1}^{\infty} (p+n-\beta)(p+n) \, a_{p+n,1} a_{p+n,2} \le p(p-\beta).$$

G. S. SÅLÅGEAN AND H. M. HOSSEN AND M. K. AOUF

This will be certainly satisfied if

$$\frac{(p+n-\beta)(p+n)}{p(p-\beta)} \le \frac{(p+n-\alpha)(p+n-\gamma)}{(p-\alpha)(p-\gamma)} \quad (n \ge 1).$$

or

$$\beta \le p - \frac{n(p+n)(p-\alpha)(p-\gamma)}{p(p+n-\alpha)(p+n-\gamma) - (p+n)(p-\alpha)(p-\gamma)} \quad (n \ge 1).$$

Since

$$K(n) = p - \frac{n(p+n)(p-\alpha)(p-\gamma)}{p(p+n-\alpha)(p+n-\gamma) - (p+n)(p-\alpha)(p-\gamma)} \quad (n \ge 1)$$
(2.8)

is an increasing function of $n~(n\geq 1),$ letting n=1 in (2.8) we obtain

$$\beta \le K(1) = p - \frac{(p+1)(p-\alpha)(p-\gamma)}{p(p+1-\alpha)(p+1-\gamma) - (p+1)(p-\alpha)(p-\gamma)},$$

and so $\beta(p, \alpha, \gamma) = K(1)$. Finally, the result is sharp for the functions f_1 and f_2 defined by (2.7).

Theorem 2.6. Let the functions f_i , $i \in \{1, 2\}$, defined by (2.1) be in the class $T^*(p, \alpha)$; then the function

$$h(z) = z^{p} - \sum_{n=1}^{\infty} \left(a_{p+n,1}^{2} + a_{p+n,2}^{2} \right) z^{p+n}$$
(2.9)

belongs to the class $T^*(p, \delta(p, \alpha))$, where

$$\delta(p, \alpha) = p - \frac{2(p - \alpha)^2}{(p + 1 - \alpha)^2 - 2(p - \alpha)^2}.$$

The result is sharp.

Proof. By virtue of Lemma 1.1, we obtain

$$\sum_{n=1}^{\infty} \left\{ \frac{p+n-\alpha}{p-\alpha} \right\}^2 a_{p+n,1}^2 \le \left\{ \sum_{n=1}^{\infty} \frac{p+n-\alpha}{p-\alpha} a_{p+n,1} \right\}^2 \le 1$$
(2.10)

and

$$\sum_{n=1}^{\infty} \left\{ \frac{p+n-\alpha}{p-\alpha} \right\}^2 a_{p+n,2}^2 \le \left\{ \sum_{n=1}^{\infty} \frac{p+n-\alpha}{p-\alpha} a_{p+n,2} \right\}^2 \le 1.$$
(2.11)

It follows from (2.10) and (2.11) that

$$\sum_{n=1}^{\infty} \frac{1}{2} \left\{ \frac{p+n-\alpha}{p-\alpha} \right\}^2 \left(a_{p+n,1}^2 + a_{p+n,2}^2 \right) \le 1.$$

Therefore, we need to find the largest δ such that

$$\frac{p+n-\delta}{p-\delta} \leq \frac{1}{2} \left\{ \frac{p+n-\alpha}{p-\alpha} \right\}^2,$$

that is

$$\delta \le p - \frac{2n(p-\alpha)^2}{(p+n-\alpha)^2 - 2(p-\alpha)^2} \quad (n \ge 1).$$

Since

$$D(n) = p - \frac{2n(p-\alpha)^2}{(p+n-\alpha)^2 - 2(p-\alpha)^2} \quad (n \ge 1)$$

is an increasing function of $n \ (n \ge 1)$, we readily have

$$\delta \le D(1) = p - \frac{2(p-\alpha)^2}{(p+1-\alpha)^2 - 2(p-\alpha)^2}$$

The result is sharp for the functions f_i , $i \in \{1, 2\}$ given by (2.4).

Theorem 2.7. Let the functions f_i , $i \in \{1, 2\}$, defined by (2.1) be in the class $C(p, \alpha)$; then the function h(z) defined by (2.9) belongs to the class $C(p, \delta(p, \alpha))$, where

$$\delta(p,\alpha) = p - \frac{2p(p-\alpha)^2}{(p+1)(p+1-\alpha)^2 - 2p(p-\alpha)^2}.$$

The result is sharp for the functions f_i , $i \in \{1, 2\}$ defined by (2.5).

3. Integral operators

Theorem 3.1. Let the function f defined by (1.3) be in the class $T^*(p, \alpha)$ and let d be a real number such that d > -p; then the function F defined by

$$F(z) = \frac{d+p}{z^d} \int_0^z t^{d-1} f(t) dt$$
(3.1)

also belongs to the class $T^*(p, \alpha)$.

Proof. From the representation of F it follows that

$$F(z) = z^p - \sum_{n=1}^{\infty} b_{p+n} z^{p+n}$$
, where $b_{p+n} = \frac{d+p}{d+p+n} a_{p+n}$.

Therefore

$$\sum_{n=1}^{\infty} (p+n-\alpha)b_{p+n} = \sum_{n=1}^{\infty} (p+n-\alpha)\frac{d+p}{d+p+n}a_{p+n} \le \sum_{n=1}^{\infty} (p+n-\alpha)a_{p+n} \le p-\alpha,$$

since $f \in T^*(p, \alpha)$. Hence, by Lemma 1.1, $F \in T^*(p, \alpha)$.

Putting d = 1 - p in Theorem 3.1 we get the following corollary.

Corollary 3.1. Let the function f defined by (1.3) be in the class $T^*(p, \alpha)$ and let F be defined by

$$F(z) = \frac{1}{z^{1-p}} \int_0^z \frac{f(t)}{t^p} \, dt;$$

then $F \in T^*(p, \alpha)$.

Theorem 3.2. Let d be a real number such that d > -p. If $F \in T^*(p, \alpha)$, then the function f defined by (3.1) is p-valent in $|z| < R_p^*$, where

$$R_{p}^{*} = \inf_{n} \left[\frac{p(p+n-\alpha)(d+p)}{(p+n)(p-\alpha)(d+p+n)} \right]^{1/n}.$$

The result is sharp.

G. S. SÅLÅGEAN AND H. M. HOSSEN AND M. K. AOUF

Proof. Let $F(z) = z^p - \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ $(a_{p+n} \ge 0)$. It follows from (3.1)

that

$$f(z) = \frac{z^{1-d} \left(z^d F(z) \right)'}{d+p} = z^p - \sum_{n=1}^{\infty} \frac{d+p+n}{d+p} a_{p+n} z^{p+n}$$

To prove the result it suffices to show that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p \quad \text{for} \quad |z| < R_p^*.$$

Now

$$\left|\frac{f'(z)}{z^{p-1}} - p\right| = \left|-\sum_{n=1}^{\infty} (p+n)\frac{d+p+n}{d+p}a_{p+n}z^n\right| \le \sum_{n=1}^{\infty} (p+n)\frac{d+p+n}{d+p}a_{p+n}|z|^n.$$

Thus $|f'(z)/z^{p-1} - p| \le p$ if

$$\sum_{n=1}^{\infty} \frac{p+n}{p} \frac{d+p+n}{d+p} a_{p+n} |z|^n \le 1.$$
(3.2)

But Lemma 1.1 confirm that

$$\sum_{n=1}^{\infty} \frac{p+n-\alpha}{p-\alpha} a_{p+n} \le 1.$$

Thus (3.2) will be satisfied if

$$\frac{(p+n)(d+p+n)}{p(d+p)}|z|^n \le \frac{p+n-\alpha}{p-\alpha} \quad (n\ge 1)$$

or if

$$|z| \le \left[\frac{p(p+n-\alpha)(d+p)}{(p+n)(p-\alpha)(d+p+n)}\right]^{1/n} \quad (n \ge 1).$$
(3.3)

The required result follows now from (3.3). The result is sharp because the functions

$$f(z) = z^{p} - \frac{(p-\alpha)(d+p+n)}{(p+n-\alpha)(d+p)} z^{p+n} \quad (n \ge 1)$$

are defined by (3.1) when F are given by (1.4).

In a similar manner, with the aid of Lemma 1.2, we can prove the following theorem.

Theorem 3.3. Let the function f defined by (1.3) be in the class $C(p, \alpha)$ and let d be a real number such that d > -p. Then the function F defined by (3.1) also belongs to the class $C(p, \alpha)$.

Theorem 3.4. Let d be a real number such that d > -p. If $F \in C(p, \alpha)$, then the function f defined by (3.1) is p-valent in $|z| < R_p^{**}$, where

$$R_p^{**} = \inf_n \left[\frac{(p+n-\alpha)(d+p)}{(p-\alpha)(d+p+n)} \right]^{1/r}$$

ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. II

The result is sharp for the functions

$$f(z) = z^{p} - \frac{p(p-\alpha)(d+p+n)}{(p+n)(p+n-\alpha)(d+p)} z^{p+n} \quad (n \ge 1).$$

References

- [1] M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25 (1988), no. 1, 53-66.
- S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 25 (1985), no. 4, 385-402.
- D. A. Patil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 27 (75) (1983), 145-160.
- [4] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A. 29 (1975), 99-107.

"BABEŞ-BOLYAI" UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, STR. M. KOGĂLNICEANU NR. 1, CLUJ-NAPOCA, ROMANIA *E-mail address*: salagean@math.ubbcluj.ro

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIV. OF MANSOURA, MANSOURA, EGYPT