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A FUNCTIONAL CHARACTERIZATION OF THE
SYMMETRIC-DIFFERENCE OPERATION

VASILE POP

Abstract. Let M be a set and P(M) the family of the subsets of M.
On P(M) we consider the set of all binary operations O(P(M)) and on
O(P(M)) we define a relation that we call the subordination relation. Then
we show that the only group operation on P (M), subordinate to the union,
is the symmetric difference.

1. Introduction

Let M be an arbitrary set and P(M) = {A] A C M}, the family of the
subsets of M. On the set of the binary operations on P(M) we define the following
subordination relation:

If f,g: P(M)xP(M) — P(M) are binary operation on P(M), we say that f
is subordinate to g or that g subordinates f,if f(X,Y) C g(X,Y) forall X, Y € P(M)
and we denote f < g.

Our purpose is to determine those operations that confers to P(M) a group
structure and which subordinate the intersection or are subordinated to the union.

2. Main results

For M and P(M) mentioned above, we denote O(P(M)) the set of all binary
operation on the set P(M):

O(P(M))={f:P(M)xP(M)— P(M)| fis a function }.

Remark 1. a) Among the usual operations, let us mention:

— the operation : f(X,Y) =0, for all X,Y € P(M);

— the operation M: f(X,Y) = M, for all X,Y € P(M);

— the intersection (N): f(X,Y)=XNY, for all X,Y € P(M);
— the union (U): f(X,Y)=XUY, for all X,Y € P(M);

— the difference (\): f(X,Y)=X\Y, for all X, Y € P(M);

— the symmetric difference (A):

FX,)Y)=XAY = (XUY)\(XNY)=(X\Y)U([\X)
b) The following subordination relations hold?

P<n<uU<M.
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c) For f,g € O(P(M)) given operators, the operations N, U and A are defined

by:
(fNg)(X,Y) = f(X,Y)Ng(X,Y),
(fUgX,Y) = f(X,Y)Ug(X,Y),
(fAg)(X,Y) = f(X,Y)Ag(X,Y),

for all X, Y € P(M).
Proposition 1. The subordinate relation is an order relation, which deter-
mines on O(P(M)) a lattice, where:

inf{f,g} = fNg and sup{f,g} = fUg, for f,g € O(P(M)).

Proof. Let i, f,g,u € O(P(M)).

Ifi < fandi < g, then i(X,Y) C f(X,Y) and i(X,Y) C g(X,Y). So
i(X,Y) C (fNg)(X,Y). The maximal operation ¢, which verifies this inclusion is
i=fNg.

If f <wandg <u, then f(X,Y) C u(X,Y) and ¢g(X,Y) C u(X,Y). So
(fUgX,Y) C uw(X,Y). The minimal operation u, which verifies this inclusion is
u=fUg. O

It is known that the operation A determines on P(M) a group structure and
A < U. We will show that, if M is a finite set, then this property characterizes the
symmetric difference, that is A is the unique group operation on P (M), subordinated
to the union.

Theorem 1. If M is a finite set, then the symmetric difference A is the
unique binary operation on P(M) which is subordinated to the union and which de-
termines on P(M) a group structure.

Proof. a) If we denote by ”%” an operation which satisfies the requirements
of the theorem, from 0 * ) C ) we have ) x ® = (. So the only element that could be
the unit element is (.

b) We show by induction after | X| that X * X = for all X € P(M).

For | X| =0 we have z = and 0§ * () = 0.

We suppose X * X = () for all X € P(M) with |X| < n and let A € P(M)
with |A| =n+ 1.

If X C A, then XA C XUA = A, so the translation restricted to P(M) has
values in P(M). Being an injection, it is a surjection, since P(A) is finite. Thus, there
exists the set B C A such that t4(B) = A* B = (). If we suppose that B # A, then
|B| < n and from the induction hypothesis we have B+ B = (. From A* B = B* B
we have A = B, which is a contradiction that shows that A x A = ().

¢) Using an induction on |B| = k we show that if ANB = (), then AxB = AUB.

For k =0, Ax() = AUD = A is immediately verified since () is the unit
element.

Fork=1,B={z},z ¢ A. If Ax{z} = C C AU{x} then C«{z} C CU{z},
that is: Ax ({z} x{z}) CcCU{z}or Ax0 C CU{z} or AC CU{z}. Since z ¢ A
it follows that A C C and C C AU {x}. So, either C = A or C = AU {z}. But
C = Ax{z} # A, so we finally obtain C = AU {z}.

For k =n+1,let B= B, U{y} with |B,| =n. B,NA=0andy ¢ A,
y & Bh.
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We have
A% B = Ax (ByU{y}) = Ax (Bo+ {y}) = (A Ba) # {y} =
=(A*B,)U{y}=(AUB,)U{y} =AU (B, U{y}) =AUB
d) We show that X *Y = XAY = (X \Y)U (Y \ X). Let XNY = Z,
X\Z=U,Y\ Z =V where U, V, Z are disjoint.
We have
X+Y=(ZUU)x(ZUV)ZU*2Z)x(Z+V)=

:U*(Z*Z)*Vb:)U*(Z)*Va:)U*VC:)UUV

=X\2)UY\2)=X\Y)u(Y\X)=XAY. O
Theorem 2. If M is a finite set, then the unique operation on P(M) which
subordinates the intersection and which determines on P(M) a group structure is the
operation A defined by:

F(X,Y) = XAY = XAY = M\ (XAY), X,Y € P(M).

~

Proof. If we denote by ”"T” such an operation, then X NY C XTY <
XTY CXUY & XTY CXUY.

Let us denote X TY = X %Y and show that (P(M),*) is a group.

The function ¢ : P(M) — P(M), ¢(X) = X = M \ X is a bijection and the
structure induced from the group (P(M), T)is X *Y = c }(c(X)Te(Y)) = XTY.

Using now the previous theorem and the relation X *Y C X UY we deduce
that x = A, so XTY = XAY or, equivalent, XTY = XAY = XAY. O

Remark 2. The proofs of the theorems have essentially used the fact that
the set M is finite. It is an open problem whether the results take place for infinite
sets.
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