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Dedicated to Professor D.D. Stancu on his 75th birthday

Abstract. An extension of Stancu’s operator P
(α,β)
m to the case of bi-

variate functions is presented and some approximation properties of this

operator are discussed.

1. Preliminaries

In 1969 (see[8]), D.D. Stancu constructed and studied a linear and positive

operator, depending on two positive parameters α and β which satisfy the condition

0 ≤ α ≤ β. This operator, denoted by P
(α,β)
m , associates to any function f ∈ C([0, 1])

the polynomial P
(α,β)
m f, defined by:

(
P (α,β)

m f
)

(x) =
∑m

k=0
pmk(x) f

(
k + α

m + β

)
(1.1)

where pmk(x) are the fundamental Bernstein polynomials. In the monograph by F.

Altomare and M. Campiti ([1]) this operator is called ”the operator of Bernstein-

Stancu”.

A first extensions of the operator (1.1) to the case of bivariate functions was

given by F. Stancu in her doctoral thesis (see [9]). The aim of the present paper is to

extend the operator (1.1) to the case of B-continuous (Bőgel continuous functions).

More exactly, we shall present a GBS (Generalized Boolean Sum) operator of Stancu

type and some properties of this operator.
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The terminus of ”B-continuous function” was introduced by K. Bőgel ([5],[6]).

A first result concerning the approximation of this kind of functions is due to E.

Dobrescu and I. Matei ([7]).

An important ”test function theorem”, (the analogous of the well known Ko-

rovkin theorem), for the approximation of B-continuous functions by GBS operators

was introduced by C. Badea and C. Cottin ([3)]. Approximation properties of the

GBS operators were studied by C. Badea, C. Cottin, H.H. Gonska, D. Kacsó and

many others.

2. The GBS operator of Stancu type

Let be I = [0, 1] and let I2 = [0, 1] × [0, 1] be the unit square. The space of

all B-continuous functions on I2 will be denoted by Cb(I2).

Next, we consider four non-negative parameters α1, β1, α2,β2,satisfying the

conditions 0 ≤ α1 ≤ β1, 0 ≤ α2 ≤ β2. If f ∈ Cb(I2), the parametric extensions of the

operator P
(α,β)
m are defined respectively by:

(
xP (α1,β1)

m f
)

(x, y) =
∑m

k=0
pmk(x)f

(
k + α1

m + β1
, y

)
, (2.1)

(
yP (α2,β2)

n f
)

(x, y) =
∑n

l=0
pnl(y)f

(
x,

l + α2

n + β2

)
. (2.2)

It is easy to see that xP
(α1,β1)
m and yP

(α2,β2)
n are linear and positive operators, well

defined on Cb(I2).

Let Lm,n : Cb(I2) → Cb(I2) be the tensorial product of xP
(α1,β1)
m and

yP
(α2,β2)
n , i.e.

Lm,n =x P (α1,β1)
my ◦ P (α2,β2)

n . (2.3)

Then, Lm,n : Cb(I2) → Cb(I2) associates to any f ∈ Cb(I2) the bivariate

polynomial
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Lm,n f(x, y) =
∑m

k=0

∑n

l=0
pmk(x)pn,l(y)f

(
k + α1

m + β1
,

l + α2

n + β2

)
(2.4)

It is well known (see for example [4] or [10]) that the operator (2.4) has the

following properties:

Lemma 2.1. If eij : I2 → R (i, j ∈ N, 0 ≤ i + j ≤ 2) are the test functions

the following equalities hold

(i) (Lm,ne00)(x, y) = 1;

(ii) (Lm,ne10)(x, y) = x + α1−β1x
m+β1

;

(iii) (Lm,ne01)(x, y) = y + α2−β2y
n+β2

;

(iv) (Lm,ne20)(x, y) = x2 + mx(1−x)+(α1−β1x)(2mx+β1x+α1)
(m+β1)2

;

(v) (Lm,ne02)(x, y) = y2 + ny(1−y)+(α2−β2y)(2ny+β2y+α2)
(m+β2)2

;

for any (x, y) ∈ I2.

Lemma 2.2 The operator (2.4) is linear and positive.

Definition 2.1. Let Sm,n : Cb(I2) → Cb(I2) be the boolean sum of xP
(α1,β1)
m

and yP
(α2,β2)
n , i.e.

Sm,n =x P (α1,β1)
m +y P (α2,β2)

n −x P (α1,β1)
m ◦y P (α2,β2)

n (2.5)

The operator Sm,n will be called GBS operator of Stancu type.

By direct computation, one obtains:

Lemma 2.3. If Sm,n : Cb(I2) → Cb(I2) is the GBS operator of Stancu type,

then

(Sm,nf) (x, y) =∑m
k=0

∑n
l=0 pmk(x) pnl(y)×

{
f
(

k+α1
m+β1

, y
)

+f
(
x, l+α2

n+β2
, y
)
−f
(

k+α1
m+β1

, l+α2
n+β2

)} (2.6)

for any f ∈ Cb(I2) and any (x, y) ∈ I2.

Remark 2.1. For α1 = β1 = α2 = β2 = 0, the GBS operator of Stancu type

is reduced to the GBS operator of Bernstein type, which interpolates any function

f ∈ Cb(I2) on the boundary of the unit square I2. If α1 = β1 = 0 and α2 6= 0, β2 6= 0,

the corresponding operator interpolates any f ∈ Cb(I2) on the left and respectively
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on the right side of the boundary of unit square I2. Others particular cases of the

GBS operator of Stancu type can be discussed in a similar way.

Theorem 2.1. For any f ∈ Cb(I2),the sequence {Sm,nf}m,n∈N converges

to f, uniformly on I2 as m and n tend to infinity

Proof. Let us to introduce the following notations

um(x) =
α1 − β1x

m + β1
,

vn(y) =
α2 − β2y

n + β2
,

wm, n(x, y) = x2 + y2 +
mx(1− x) + (α1 − β1x)(2mx + β1 + α1)

(m + β1)2

+
ny(1− y) + (α2 − β2y)(2ny + β2 + α2)

(n + β2)2
.

Then the results contained in Lemma 2.1 can be written in the form

(Lm,ne00) (x, y) = 1;

(Lm,ne10) (x, y) = x + um(x);

(Lm,ne01) (x, y) = y + vn(y);

(Lm,n (e20 + e02)) (x, y) = x2 + y2 + wm,n(x, y), for any (x, y) ∈ I2.

Because the sequences {um(x)}m∈N, {vn(x)}n∈N and {wm,n(x)}m,n∈N tend

to zero, uniformly on I2 as m and n tend to infinity, we can apply the Korovkin -

type theorem for the approximation of B-continuous functions due C.Badea, I.Badea

and H.H.Gonska (see [2]. Applying this theorem, it follows that Sm,nf tend to f ,

uniformly on I2, for any f ∈ Cb(I2) as m and n tend to infinity.

Next the approximation order of any function f ∈ Cb(I2) by Sm,nf will be

established, using the mixed modulus of smoothness (see [3]). We need the following

result, due to C. Badea and C. Cottin [see [3]).

Theorem 2.2. Let X and Y be compact real intervals. Furthermore, let

L : Cb(X, Y ) → Cb(X, Y ) be a positive linear operator and U the associated GBS

operator. Then, for all f ∈ Cb(X, Y ) , (x, y) ∈ X × Y and δ1,δ2 > 0 the inequality

|(f − Uf)(x, y)| ≤ |f(x, y)| · |1− L(x;x, y|+

{L(1;x, y) + 1
δ1

√
L((x− ◦)2;x, y) + + 1

δ2

√
L((y − ∗)2;x, y)+

+ 1
δ1δ2

√
L((x− ◦)2(y − ∗)2;x, y) }ωmixed(δ1, δ2)

(2.7)
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holds.

Lemma 2.4. The bivariate operator of Stancu verifies the following equali-

ties:

(i) Lm,n((x− ◦)2;x, y) = mx(1−x)+(α1−β1x)2

(m+β1)2
;

(ii) Lm,n((y − ∗)2;x, y) = ny(1−y)+(α2−β2y)2

(n+β2)2
;

(iii) Lm,n((x− ◦)2(y − ∗)2 = 1
(m+β1)2(n+β2)2

×{
mx(1− x) + (α1 − β1x)2

}
×
{
ny(1− y) + (α2 − β2y)2

}
.

Proof. The equalities follow from the linearity of Lmn and Lemma 2.1. �

Theorem 2.3. The GBS operators of Stancu Smn verify the inequality:

|Sm,nf(x, y)− f(x, y)| ≤{
1
δ1 ·

1
m+β1

√
m
4 + (α1 − β1x)2 + 1

δ2

√
n
4 + (α2 − β2y)2+

+ 1
δ1δ2

· 1
(m+β1)(n+β2)

√
{m

4 + (α1 − β1x)2}{n
4 + (α2 − β2y)2} }×

×ωmixed(δ1δ2),

(2.8)

for any δ1, δ2 > 0 and any (x, y) ∈ I2.

Proof. We apply the Lemma 2.4 and the inequalities x(1−x) ≤ 1
4 , y(1−y) ≤

1
4 for any(x, y) ∈ I2.�

Remark 2.2. The inequality (2.8) give us the order of the local approxima-

tion of f by Sm,nf.

The order of the global approximation of f ∈ Cb(I2) by Sm,nf is expressed

in

Theorem 2.4. The GBS operator of Stancu verify the following inequality:

|Sm,nf(x, y)− f(x, y)| ≤ 9
4
ωmixed

(√
m + 4α2

1

m + β1
,

√
n + 4α2

2

n + β2

)
(2.9)

Proof. Taking into account that (α1 − β1x)2 ≤ α2
1 and (α2 − β2y)2 ≤ α2

1 for

any (x, y) ∈ I2, from Theorem 2.3, we get:

|Sm,nf(x, y)− f(x, y)| ≤{
1

2δ1

√
m + 4α2

1

m + β1
+

1
2δ2

√
n + 4α2

2

n + β2
+

√
(m + 4α2

1)(n + 4α2
2)

4δ1δ2(m + β1)(m + β2)

}
ωmixed(δ1δ2).
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Choosing then

δ1 =

√
m + 4α2

1

m + β1
; δ2 =

√
n + 4α2

2

n + β2
;

it follows (2.9) and the proof ends �.

Remark 2.3. The inequality (2.9) can be more rafinated, taking into account

of the values of α1,α2 with respect β1 and β2.
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