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RELATION BETWEEN THE PALAIS-SMALE CONDITION AND
COERCIVENESS FOR MULTIVALUED MAPPINGS

MEZEI ILDIKO ILONA

Abstract. The aim of this paper is to study the coerciveness property of

a class of multivalued mappings satisfying the Palais-Smale condition.

1. Introduction

Many papers has been devoted to show that the Palais-Smale condition
implies the coerciveness. In the differentiable case this property is studied by L.
Caklovici, S.Li, and M. Willem [2], for the locally Lipschitz functionals by Cs. Varga
and V. Varga [11]. For the class of functions introduced by A. Szulkin [10], which
is lower semicontinuous, this property has been proved by D. Goeleven in the paper
[7]. For continuous functionals this result is proved by Fang [6]. These results are
generalized by J.-N. Corvellec, see [4].

In a recent paper D. Motreanu and V.V. Motreanu [8] studied this problem
for a class of functional of type ® + +, where ® is a locally Lipschitz function and
is a proper, convex, lower semicontinuous functional.

In this paper we study the coerciveness of the function v + o, where o is a
locally Lipschitz function and « is a convex lower semicontinuous function. The main
tool used in the proof the coerciveness property is the classical Ekeland’s variational

principle [5].

2000 Mathematics Subject Classification. 49J53.

Key words and phrases. locally Lipschitz function, critical point, Palais-Smale condition, coercive.

67



MEZEI ILDIKO ILONA
2. Preliminaries

Let (X,]| - ||) be a real Banach space and let A : X ~» X be a multivalued
map with A(z) # 0, Vz € X, i.e DomA = X. Let X* be the dual of X.

Definition 2.1 [1] A : X ~» X is Lipschitz around x € X if there exists a

positive constant [ and a neighborhood U of x such that
Vi, w2 €U, |ly1 — w2l <z —22f|, Yy € A(21), y2 € A(w2).
If A is Lipschitz around all x € X, we say that A is locally Lipschitz.

Definition 2.2[9] The generalized directional derivative of the locally Lips-
chitz function f : X — R at the point zp € X in the direction h € X is defined
by

th) —
fY(xo,h) = limsup f(@+th) f(x)
x—xo t\,0 t
Let p € X* such that ||p||. < oo, where ||p||« = sup{(p,z) : ||z|| < 1,z € X}.

Lemma 2.1 If A : X ~ X s locally Lipschitz, then the function r +—

o(A(x),p) is locally Lipschitz, where

o(A(x),p) = sup{(p,y) : y € A(z)},p € X"

Proof. We consider an arbitrary xg € X. Since A is locally Lipschitz, there

exist [ > 0 and an U neighborhood of xy such that:
Vay,xe € U Vy1 € A(x1),y2 € A(x2) : [[y1 — »2l| <Ifjz1 — 22
We can suppose that o(Ax1,p) > o(Axa,p). It’s easy to verify that

0 < o(Axy,p) — o(Axg,p) < sup (P, y1 — y2)-
Yy1€AT1,y2€Axa

But
Y1 — Y2
sup (p,y1 —y2) = sup (p, lyr — v2l) =
Yi€Ax; yi€EAx; ”yl - y2H
Y1 — Y2
sup (p, =)+ [lya — vall < |plls - 1+ [[21 — 22,
yicdz;, |ly1 —y2|

providing that y; # ys .The case y; = yo is trivial.
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Therefore x — o(Az,p) is locally Lipschitz. O

We consider an appropriate class of function as [9, chapter3].

Let J : X — R be a function given by

(H) J(2) = P(z) + o(A(z), ),

where ¥ : X — R is a convex lower semicontinuous function, A : X ~» X is a locally

Lipschitz multivalued map and p € X*.

Definition 2.3 A point v € X is said to be critical point of J for p € X* if

it satisfies the following variational inequality
¢(’U) - 1/’(“) + (J(A(')7p))0(u>v - U) > 07 Vv € X.

Definition 2.4 The function J satisfies the Palais-Smale condition at level ¢
(briefly (PS).) if for each sequence {u,,} C X such that J(u,) — ¢ and (v) — ¢ (u,)—
(0(AG), p)° (Un, v — up) > —epnllv — uyl|, Yo € X, where g, — 0, {u,} contains a

convergent subsequence.
Definition 2.5 We say that J is coercive, if for ||u| — oo we have J(u) — oo.

As we said above our main tool is the Ekeland’s principle, which we recall
now.

Theorem 2.1 Let X be a complete metric space and let f : X — (—o0, 00] be
a lower semicontiuvous function such that infx f € R. Let ¢ > 0 and u € X be given
such that f(u) <infxf+e. Then for every X\ > 0, there exists an element v € X,
such that

i) f(v) < flu);

i) f(v) < f(w) + 5 - d(v,w), for every w # v;

iii) d(u,v) < A\

3. Main result

Theorem 3.1 Let X be a Banach space,J a bounded bellow function satisfying
(H) and p € X* such that ||p||« < oco. Define

¢ := liminf J(u).

llwl|—o0
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Then, if c € R, there exists a sequence {v,} C X such that:

(1) [[on]] — oo;

(i) J(va) —

(i) $(0) = B(va) + (A 2)° Wny0 = 00) = ~2n - [0 = vall, where &, —
0, Vv € X.

Proof. From the definition of ¢ there exists a sequence u, such that
J(up) < c+ L and ||u,|| > 2n, for n € N\ {0} sufficiently large. Evidently J is lower
semicontinuous and so we can apply the Theorem 2.1, with f = J, e =c+ % —infx J
and A = n.

Thus there exists v,, € X such that:

(1) J(vn)gJ(un)§c+%;

J(w) > J(v,) — %(cqt % —infxJ)|vn —wl, Yw # vp;

(2) [tn = vnll < 7.
Thus, for each w € X we have
1 1
J(w) — J(vy) > _E(C—’_ o infxJ)|w—vn].

Let w = (1 — t)vy, + tv, where v is fixed in X and ¢ € [0, 1]. Replacing w in

the last inequality we obtain
Y(vn +t(v —vn)) = Y(vn) + o (A((1 — t)vn + tv),p) — o(A(vn),p) = —entllv — v,

where &, = (c+ 1 —infy J)1.

Since 1 is convex, we have
t(v) = ¥(vn)) + o(A((1 = thvn + tv),p) — 0 (A(vn),p) = —entllv — vn.
Dividing this relation by ¢ we get

(B) 90— ¥loa) + 7 [o(Aln + 10— 1)) — o (A),1)] = ~2allo = vl
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Taking the limit as ¢ \, 0 and using that
o(A(w, +t(v —vy)),p) — o(A(wy), p)

O'(A(-,p))o(vn, v = 'Un) = limsup =
Wp—Vn N0 13
> Tim o(A(vy, + t(v —vy)),p) — o(A(vn), D)
t\.0 t
we obtain
w(v) - ¢(Un) + (O'(A(-)’p))o (Uny U= Un) > _enHU - Un”a en — 0,
Vv € X ie. exactly the (iii).
From (2) and (1) we have ||v,|| > ||unl] — ||tn — vn|| = 2n —n = n, and

J(vy,) — ¢ respectively thus we have constructed a sequence such that (i), (ii) and

(iii) are satisfied. O

Corollary 3.1 Let X be a Banach space and let J : X — R be a function
of the form J(z) = ¢¥(z) + o(Az,p), with ||p|l. < oo satisfying (H) and the (PS)
condition. If J is bounded bellow, then J is coercive.

Proof. We proceed by contradiction. Assume that

¢ = liminf J(u) € R.

llull—o0
Then by the main theorem, there exists a sequence v, such that ||v,| — oo,
J(va) — ¢ and 9(v) = P(vn) + (0(A(), )" (vn,v = va) = —enflv = vall, Yo € X,
where €, — 0. Since J satisfies the (PS) condition, we can choose a convergent

subsequence of {v,,}, which is in contradiction with ||v,|| — co. O

Remark 3.1 The Corollary 3.1 generalize some results from the papers [2],
[11], [7] and [8].
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