
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 4, December 2001

INTERPOLATION RESULTS FOR SOME CLASSES
OF ABSOLUTELY SUMMING OPERATORS

CRISTINA ANTONESCU

Abstract. K. Miyazaki, [9], has introduced the class of (p, q; r)-absolutely

summing operators, which generalize the class of (p, q)-absolutely summing

operators, introduced by Mitiagin and Pe lczynski in 1966.

We establish an interpolation result for (p, q; r)−absolutely sum-

ming operators and also for some other operator classes which generalize

Miyazaki”s classes.

1. Introduction

The interpolation properties of the p−summable and the (p, q)-absolutely

summing operators are well known. Miyazaki has extended the result concerning the

interpolation stability for (p, q)−absolutely summing operators to the more general

ideal of (p, q; r)-absolutely summing operators, which he introduced [9]. In this paper

we will look at his result, because it relies on the presumption that the ideal of (p, q; r)-

absolutely summing operators is normed, which in general does not happen, this

ideal being only quasi-normed. N. Tita [11], [12] has introduced and studied ideals

of operators which are (Φ,Ψ)-absolutely summing, where Φ and Ψ are symmetric

norming functions, and which are more general than the (p, q)-absolutely summing

operators and the largest part of the ideals studied by Miyazaki. Due to the non-

linearity of the symmetric norming functions, nothing could be ascertained regarding

the interpolation properties of these ideals of operators. For this reason we ask the

question of existence of ideals of operators more general than those of Miyazaki, and

which still satisfy the stability result proved by him. In order to answer to the above

question we construct a class of absolutely summing opetators, which is based on the

Lorentz-Zygmund spaces of sequences.

Key words and phrases. p-absolutely summing operators, p-q absolutely summing operators, symmetric

norming function, Lorentz-Zygmund sequence ideals.
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The present paper is a revised and extended version of [1]. This revision

became necessary as we had not, at the time of writing [1], been aware of Myazaki”s

work, and we realized that the class we had introduced was not satisfactorily moti-

vated nor exhaustively treated.

2. Preliminaries

We first introduce some notation and recall a few known results. Throughout

the paper N denotes the set of all positive integers, while E,F are Banach spaces over

Γ, where Γ is the real or the complex field. By F (E) we denote a finite set of vectors

x1, ..., xn in E. We denote

L(E,F ) := {T : E → F : T is linear and bounded} ,

and we let E∗ be the dual space, E∗ = L(E,Γ). By UE we denote the unit ball

{x ∈ E : ‖x‖ ≤ 1} . For a ∈ E∗ and x ∈ E, let 〈x, a〉 := a (x) . We denote by l∞

the set of all scalar sequences, {xn}n , with the property ‖x‖∞ := sup
n∈N

|xn| < ∞,

and by c0 the set of all scalar sequences, {xn}n , with the property lim
n→∞

|xn| = 0.

For 0 < p < ∞, we let lp denote the set of all scalar sequences {xn}n such that

‖x‖p :=

( ∞∑
n=1

|xn|p
) 1

p

< ∞.

The operator classes, which are the subject of this article, are closely related

to some vector-valued sequence spaces. For this reason we shall recall here a few

definitions and results about these spaces.

Definition 1. ([5]) Let 1 ≤ p ≤ ∞. The vector sequence {xn}n in E is strongly

p−summable if the corresponding scalar sequence {‖xn‖}n is in lp. We denote by

lstrong
p (E) the set of all such sequences in E.

It is clearly a vector space under pointwise operations, and a natural norm is

given by ‖{xn}‖strong
p :=

( ∞∑
n=1

‖xn‖p

) 1
p

, respectively ‖{xn}‖strong
∞ := sup

n
‖xn‖ .

Definition 2. ([5]) Let 1 ≤ p ≤ ∞. The vector sequence {xn}n in E is weakly

p−summable if the scalar sequences {|〈x∗, xn〉|}n are in lp for every x∗ ∈ E∗. We

denote by lweak
p (E) the set of all such sequences in E.
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It is clearly a vector space under pointwise operations, and a norm is

given by ‖{xn}‖weak
p := sup

x∗∈UE∗

( ∞∑
n=1

|〈x∗, xn〉|p
) 1

p

, respectively ‖{xn}‖weak
∞ :=

sup
x∗∈UE∗

sup
n
|〈x∗, xn〉| = sup

n
‖xn‖ = ‖{xn}‖strong

∞ .

Definition 3.([13]) For x = {xn}n ∈ l∞, let

sn (x) := inf {σ ≥ 0 : card {i : |xi| ≥ σ} < n} .

Proposition 4. ([13]) The numbers sn (x) have the following properties:

(1) . ‖x‖∞ = s1 (x) ≥ s2 (x) ≥ ... ≥ 0, for all x = {xn}n ∈ l∞;

(2) . sn+m−1 (x + y) ≤ sn (x)+sm (y) , for all x = {xi}i ∈ l∞, y = {yi}i ∈ l∞,

and n, m ∈ {1, 2, ...} , where x + y = {xi + yi}i ;

(3) . sn+m−1 (x · y) ≤ sn (x) · sm (y) , for all x = {xi}i ∈ l∞, y = {yi}i ∈ l∞,

and n, m ∈ {1, 2, ...} , where x · y = {xi · yi}i ;

(4) . If x = {xm}m ∈ l∞ and card {m : xm 6= 0} < n then sn (x) = 0.

If the sequence x = {xn}n ∈ l∞ is ordered such that |xn| ≥ |xn+1| , for any

natural n, then sn (x) = |xn| , [13] .

Definition 5. (Lorentz sequence spaces) ([9]) Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞, or

1 ≤ p ≤ ∞, q = ∞. The vector sequence {xn}n in E is strongly (p, q)−summable if
∞∑

n=1

[
i

1
p−

1
q · sn (‖x‖)

]q
is finite, respectively sup

n
i

1
p · sn (‖x‖) is finite, where

sn (‖x‖) := sn

(
{‖xi‖E}i

)
.

The space of all such sequences in E will be called the Lorentz sequence space

and will be denoted by lstrong
p,q (E) . In particular, if E = Γ, then lstrong

p,q (Γ) is denoted

lp,q.

It is clear that lstrong
p,q (E) is a vector space under pointwise operations, and

a natural quasi-norm is given by

‖{xn}‖strong
p,q :=

( ∞∑
n=1

[
i

1
p−

1
q · sn (‖x‖)

]q) 1
q

,

respectively

‖{xn}‖strong
p,∞ := sup

n
i

1
p · sn (‖x‖) .

It is important for our future considerations to recall the lexicografic order

of the Lorentz spaces.

25



CRISTINA ANTONESCU

Proposition 6. ([7], [9]) (1) Let 1 ≤ p < ∞, 1 ≤ q < q1 ≤ ∞. Then lstrong
p,q (E) ⊂

lstrong
p,q1

(E) and for every {xi}i ∈ lstrong
p,q (E) ,

‖{xn}‖strong
p,q1

≤ c (p, q, q1) · ‖{xn}‖strong
p,q .

(2) Let 1 ≤ p < p1 ≤ ∞, 1 ≤ q, q1 ≤ ∞. Then lstrong
p,q (E) ⊂ lstrong

p1,q1
(E) and,

for every {xi}i ∈ lstrong
p,q (E) ,

‖{xn}‖strong
p1,q1

≤ c (p, p1, q, q1) · ‖{xn}‖strong
p,q .

We now recall, from [6], some basic facts about the classical real interpolation

method, called the K-method. An interpolation method is a method of constructing

interpolation spaces from a given couple of spaces. For the reader interested in finding

an introduction to interpolation theory we recommend, for example, [2], [6], [15].

We consider couples (A0, A1) of topological vector spaces A0, A1, which are

both continuously embedded in a topological vector space A. We denote this by

Ai ↪→ A, i = 1, 2 and we say that (A0, A1) is an interpolation couple.

If (A0, A1) , (B0, B1) are two such couples with A0, A1 ↪→ A, B0, B1 ↪→ B

and if A and B are two other spaces with A ↪→ A and B ↪→ B we say that A and

B are interpolation spaces with respect to the couples (A0, A1) and (B0, B1) if the

following interpolation property is fulfilled:

For every linear operator T such that T : A0 → B0, T : A1 → B1 it follows

that T : A → B.

Here we let the symbol T : A → B denote that the restriction to A of the

linear operator T is continuous.

Let (A0, A1) be an interpolation couple of quasi-normed spaces. For every

a ∈ A0 + A1 we define the functional

K (t, a, A0, A1) = K (t, a) = inf
a=a0+a1

(
‖a0‖A0

+ t · ‖a1‖A1

)
,

where ai ∈ Ai, i = 0, 1, and 0 < t < ∞.

For 0 < θ < 1 and 0 < q ≤ ∞ the spaces

(A0, A1)θ,q :=
{

a; a ∈ A0 + A1 :
(∫ ∞

0

[
t−θ ·K (t, a)

]q dt

t

)
< ∞

}
,
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if q < ∞, and

(A0, A1)θ,∞ :=
{

a; a ∈ A0 + A1 : sup
t>0

supt−θ ·K (t, x) < ∞
}

with the quasi-norm

‖a‖(A0,A1)θ,q
:=
(∫ ∞

0

[
t−θ ·K (t, a)

]q dt

t

) 1
q

,

respectively

‖a‖(A0,A1)θ,∞
= sup

t>0
supt−θ ·K (t, x) ,

are interpolation spaces. We have the following fundamental interpolation theorem.

Theorem 7. ([6]) If (A0, A1) , (B0, B1) are two interpolation couples of quasi-normed

spaces and if T is a linear operator such that T : A0 → B0, T : A1 → B1 are both

bounded, having the quasi-norms bounded from above by M0 and M1 respectively, then

T : (A0, A1)θ,q → (B0, B1)θ,q is also bounded, and its quasi-norm is bounded from

above by M for which we have the so called convexity inequality M ≤ M1−θ
0 ·Mθ

1 .

Theorem 8. ([13]) Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1, q ≤ ∞, 0 < θ < 1. If
1
p = 1−θ

p0
+ θ

p1
then

(
lstrong
p0,q0

(E) , lstrong
p1,q1

(E)
)
θ,q

= lstrong
p,q (E) . Moreover, the quasi-

norms on both sides are equivalent.

We can now introduce some classes of absolutely summing operators.

Definition 9. ([5]) Let 1 ≤ p < ∞. An operator T ∈ L(E,F ) is called absolutely

p-summing, we write T ∈ Πp(E,F ), if there is a constant c ≥ 0 such that(
n∑

i=1

‖Txi‖p

) 1
p

≤ c · sup
a∈UE∗

(
n∑

i=1

|〈xi, a〉|p
) 1

p

,

for every finite family of elements x1, ...xn ∈ E.

For T ∈ Πp(E,F ) we define πp (T ) := inf c, the infimum being taken over all

constants c ≥ 0 for which the above inequality holds.

Note that πp (·) is a norm on the space of absolutely p−summing operators,

[5] , [10].

The most deep result concerning absolutely p−summing operators is given

by the following statement called the domination theorem.

Theorem 10. ([5], [10]) Let 1 ≤ p < ∞, T ∈ L(E,F ) and K be a weak*-compact

norming subset of UE∗ . Then T ∈ Πp(E,F ) if and only if there is a constant c and a
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regular probability measure µ on K such that

‖Tx‖ ≤ c ·
(∫

UE∗

(|〈x, x∗〉|)p
dµ (x∗)

) 1
p

,

for every x ∈ E, and πp (T ) = inf c.

We conclude this section by recalling the definition of the (p, q; r)−absolutely

summing operators

Definition 11. ([9]) For 1 ≤ p, q, r ≤ ∞ an operator T ∈ L (E,F ) is called

(p, q; r)−absolutely summing provided there exists a constant c > 0 such that

‖{Txi}‖strong
p,q ≤ c · ‖{xi}‖weak

r

for every {xi} ∈ F (E) . We denote by Πp,q;r (E,F ) the space of such operators acting

between E and F.

The smallest number c for which the above inequality holds is denoted by

πp,q;r (T ) .

It is observed in [7] that πp,q;r (·) is a quasi-norm on the space of (p, q; r)-

absolutely summing operators.

3. Results

We are first concerned with the interpolation result for (p, q; r)−absolutely

summing operators established in [9], as we also indicated in the introduction.

Theorem 12. Let 1 ≤ p1 < p2 < ∞, 1 ≤ q1, q2, q, r < ∞ and 0 < θ < 1. If
1
p = 1−θ

p1
+ θ

p2
then (Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F ))θ,q ⊂ Πp,q;r (E,F ) .

Proof. We shall use an idea owed to H. König, see Proposition 3 from [8] , but first

we must prove that (Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F )) is an interpolation couple.

Let T ∈ Πp1,q1;r (E,F ) and {xi}i ∈ F (E) . It follows that there exists a

constant c > 0 such that ‖{Txi}‖strong
p1,q1

≤ c · ‖{xi}‖weak
r .

But we know that ‖{Txn}‖strong
p2,q2

≤ c · ‖{Txn}‖strong
p1,q1

. Thus we obtain

‖{Txn}‖strong
p2,q2

≤ c · ‖{Txn}‖strong
p1,q1

≤ c̃ · ‖{xi}‖weak
r . In conclusion T ∈ Πp2,q2;r (E,F )

and Πp1,q1;r (E,F ) ⊂ Πp2,q2;r (E,F ) .

Let now T ∈ Πp2,q2;r (E,F ) and take {xi}n
i=1 ∈ F (E) with ‖{xi}‖weak

r = 1.

The estimate of the K−functional

K (t, T, Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F )) =

28



INTERPOLATION RESULTS FOR SOME CLASSES OF ABSOLUTELY SUMMING OPERATORS

= inf {πp1,q1;r (S) + t · πp2,q2;r (T − S) : S ∈ Πp1,q1;r (E,F )} ≥

inf
{
‖{Sxi}‖strong

p1,q1
+ t · ‖{(T − S) xi}‖strong

p2,q2
: S ∈ Πp1,q1;r (E,F )

}
≥

inf
{
‖{yi}‖strong

p1,q1
+ t · ‖{Txi − yi}‖strong

p2,q2
: y1, ..., yn ∈ F

}
=

= K
(
t, {Txi}i , lstrong

p1,q1
(F ) , lstrong

p2,q2
(F )
)

implies that

‖T‖(Πp1,q1;r(E,F ),Πp2,q2;r(E,F ))
θ,q

≥ ĉ · ‖{Txi}‖(lstrong
p1,q1 (F ),lstrong

p2,q2 (F ))
θ,q

.

But we know that ‖{Txi}‖(lstrong
p1,q1 (F ),lstrong

p2,q2 (F ))
θ,q

≥ ˜̃c · ‖{Txi}‖lstrong
p,q (F ) . Therefore,

by taking the supremum over all {xi}n
i=1 ∈ F (E) with ‖{xi}‖weak

r = 1, we get that

‖T‖(Πp1,q1;r(E,F ),Πp2,q2;r(E,F ))
θ,q

≥ c · πp,q;r (T ) .

In conclusion (Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F ))θ,q ⊂ Πp,q;r (E,F ) , as wanted.

We now recall some results concerning the Lorentz-Zygmund sequence spaces,

which were introduced by C.Bennet and K. Rudnick, [3], and generalize the Lorentz

sequence spaces.

Definition 13. ([3], [4]) Let 1 ≤ p, q ≤ ∞ and −∞ < γ < ∞. The Lorentz-Zygmund

sequence spaces are defined as follows

lp,q,γ =

{
ξ = {ξn}n ∈ c0 :

∞∑
n=1

[
n

1
p−

1
q · (1 + log n)

γ

· sn (ξ)
]q

< ∞

}
,

if q < ∞, and

lp,∞,γ =
{

ξ = {ξn}n ∈ c0 : sup
n

[
n

1
p · (1 + log n)

γ

· sn (ξ)
]

< ∞
}

.

Remark 1. ([4]) The formulas

‖·‖p,q,γ :=

( ∞∑
n=1

[
n

1
p−

1
q · (1 + log n)

γ

· sn (·)
]q) 1

q

,

respectively

‖·‖p,∞,γ := sup
n

[
n

1
p · (1 + log n)

γ

· sn (·)
]
,

define quasi-norms on lp,q,γ , respectively on lp,∞,γ .

The lexicografic order of the Lorentz-Zygmund sequence spaces is impor-

tant for our proofs so we establish it here.

Proposition 14. The following inclusions hold:
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1. lp0,q,γ0
⊆ lp1,q,γ1

, for 1 ≤ p0 < p1 < ∞, 1 ≤ q ≤ ∞, −∞ < γ0, γ1 < ∞;

2. lp,q0,γ ⊆ lp,q1,γ , for 1 ≤ p < ∞, 1 ≤ q0 < q1 ≤ ∞, γ > 0.

Moreover, in the first case, there is a constant c1 such that

‖x‖p1,q,γ1
≤ c1 ·‖x‖p0,q,γ0

for every x ∈ lp0,q,γ0
and in the second case there

is a constant c2 such that ‖x‖p,q1,γ ≤ c2 · ‖x‖p,q0,γ for every x ∈ lp,q0,γ .

To prove this proposition, we shall need the following results.

Theorem 15. ([4]) Let 0 < q ≤ ∞ and let ϕ, ρ ∈ B αρ < βϕ. Then λq (ϕ)is

continuously embedded in λq (ρ) , where

λq (ϕ) =

{
ξ = {ξn}n ∈ c0 :

∞∑
n=1

[ϕ (n) · sn (ξ)]q · n−1 < ∞

}
,

if q < ∞, and λ∞ (ϕ) =
{

ξ = {ξn}n ∈ c0 : sup
n

[ϕ (n) · sn (ξ)] < ∞
}

.

In [14] N. Tita has established a relation between Lorentz spaces and Lorentz-

Zygmund spaces, which is content of the next result.

Theorem 16. Let 1 ≤ p, q ≤ ∞, 0 < γ < ∞ and ξ = {ξn}n ∈ c0. Then ξ ∈ lp,q,γ ⇔{
2

n−1
p · s2n−1 (ξ)

}
n
∈ lr,q where γ = 1

r −
1
q . Moreover, there are constants c̃ (p, q, γ)

and c (p, q, γ) such that c̃ (p, q, γ) ·
∥∥∥{2

n−1
p · s2n−1 (ξ)

}
n

∥∥∥
r,q
≤ ‖ξ‖p,q,γ ≤

≤ c (p, q, γ) ·
∥∥∥{2

n−1
p · s2n−1 (ξ)

}
n

∥∥∥
r,q

.

Proof of Proposition 14. 1. Consider ϕ : (0,∞) → (0,∞) defined

by ϕ (t) = t
1

p0 · (1 + log |t|)γ0 and ρ : (0,∞) → (0,∞) defined by ρ (t) = t
1

p1 ·

(1 + log |t|)γ1 . Then ϕ, ρ ∈ B and βϕ = 1
p0

, αρ = 1
p1

, [4] . Hence if 0 < p0 < p1 < ∞,

then αρ < βϕ, and Theorem 15 applies to give the desired inclusion.

To prove 2., note that by Theorem 16 ξ ∈ lp,q0,γ ⇔
{

2
n−1

p · s2n−1 (ξ)
}

n
∈

lr0,q0 where γ = 1
r0
− 1

q0
. Let q1 > q0 and r1 such that γ = 1

r1
− 1

q1
. It follows that

r0 < r1 and further on lr0,q0 ⊆ lr1,q1 . So we obtain that
{

2
n−1

p · s2n−1 (ξ)
}

n
∈ lr1,q1

which then implies that ξ ∈ lp,q1,γ .

Remark 2. We must give here an explanation. In [14] there were given results for the

operator ideals L
(s)
p,q,γ , where s is an additive and multiplicative s-scale, an s−scale

being a rule s : T ∈ L (E,F ) → {sn (T )} ∈ l∞ which assigns to every linear and

bounded operator a bounded scalar sequence with the following properties:

1. ‖T‖ = s1 (T ) ≥ s2 (T ) ≥ ... ≥ 0, for all T ∈ L(E,F );
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2. sn+m−1 (T + S) ≤ sn (T ) + sm (S) , for all T, S ∈ L(E,F ) and n, m ∈

{1, 2, ...} ;

3. sn+m−1 (T ◦ S) ≤ sn (T ) · sm (S) , for all T ∈ L(F, F0), S ∈ L(E,F ) and

n, m ∈ {1, 2, ...} ;

4. sn (T ) = 0, dimT < n;

5. sn (IE) = 1, if dimE ≥ n, where IE (x) = x, for all x ∈ E.

We call sn (T ) the n-th s−number of the operator T. For properties, examples

of s−numbers and relations between different s-numbers we refer the reader to [10],

[12], [13].

If we take account of the similarity between the axioms of the sequence

{sn (T )}n , where s is an additive s-scale, T ∈ L(E,F ), and the properties of

{sn (x)}n , where x = {xn}n ∈ l∞, we can transfer the result obtained in [14] by

N. Tita from L
(s)
p,q,γ to lp,q,γ .

In [14], an interpolation result for the Lorentz-Zygmund operator ideals L
(s)
p,q,γ

is also established. We can also transfer this to the sequence spaces case, as follows.

Theorem 17. Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0 ≤ q1 ≤ ∞, 1 ≤ q ≤ ∞, 0 < γ0, γ1 < ∞

and 0 < θ < 1. Then (
lp0,q0,γ0

, lp1,q1,γ1

)
θ,q

⊆ lp,q,γ ,

where 1
p = 1−θ

p0
+ θ

p1
and γ = (1− θ) · γ0 + θ · γ1.

Moreover for every x ∈
(
lp0,q0,γ0

, lp1,q1,γ1

)
θ,q

the following inequality is true

‖x‖p,q,γ ≤ c (p, q, γ) · ‖x‖(lp0,q0,γ0 ,lp1,q1,γ1)θ,q

.

We start now our construction which generalizes Miyazaki’s spaces..

Definition 18. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, −∞ < γ < ∞. The vector se-

quence {xn}n in E is strongly (p, q, γ)−summable if {‖xn‖}n ∈ lp,q,γ . We denote

by lstrong
p,q,γ (E) the set of all such sequences in E. It is easy to see that lstrong

p,q,γ (E)

is a vector space under pointwise operations, and a natural quasi-norm is given by

‖{xn}‖strong
p,q,γ := ‖{‖xn‖}‖p,q,γ .

Remark 3. It is not hard to verify that all the above results for lp,q,γ can be

transferred to lstrong
p,q,γ (E) .
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Definition 19. Suppose that 1 ≤ p, q, r ≤ ∞ and −∞ < γ < ∞. An operator

T ∈ L (E,F ) is called (p, q, γ; r)−absolutely summing provided there exists a constant

c > 0 such that ‖{Txm}‖strong
p,q,γ ≤ c · ‖{xm}‖weak

r , for every {xm}m ∈ F (E) . We

denote by Πp,q,γ;r (E,F ) the space of such operators acting between E and F.

The smallest number c for which the above inequality holds is denoted by

πp,q,γ;r (T ) .

Remark 4. It is routine to verify that the constant coming from ‖·‖strong
p,q,γ can be

used to prove the triangle inequality, and thus πp,q,γ;r (·) is a quasi-norm on the space

of (p, q, γ; r)−absolutely summing operators.

Theorem 20. Let 1 ≤ p1 < p2 < ∞, 1 ≤ q1 ≤ q2 ≤ ∞, 1 ≤ q, r ≤ ∞, 0 < γ1, γ2 < ∞

and 0 < θ < 1. If 1
p = 1−θ

p1
+ θ

p2
and γ = (1− θ) · γ1 + θ · γ2 then(

Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )
)
θ,q

⊂ Πp,q,γ;r (E,F ) .

Proof. We shall use the idea from the case of (p, q; r)−absolutely summing operators.

First we must prove that
(
Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )

)
is an interpolation

couple.

Let T ∈ Πp1,q1,γ1;r (E,F ) and {xi}i ∈ F (E) . It follows that there exists a

constant c > 0 such that ‖{Txi}‖strong
p1,q1,γ1

≤ c · ‖{xi}‖weak
r . But ‖{Txn}‖strong

p2,q2,γ2
≤

c · ‖{Txn}‖strong
p1,q1,γ1

. Hence we obtain

‖{Txn}‖strong
p2,q2,γ2

≤ c · ‖{Txn}‖strong
p1,q1,γ1

≤ c̃ · ‖{xi}‖weak
r .

¿From this it follows that T ∈ Πp2,q2,γ2;r (E,F ) , and therefore Πp1,q1,γ1;r (E,F ) ⊂

Πp2,q2,γ2;r (E,F ) .

Let now T ∈ Πp2,q2,γ2;r (E,F ) and pick {xi}n
i=1 ∈ F (E) with ‖{xi}‖weak

r =

1. The estimate of the K−functional K
(
t, T, Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )

)
=

inf
{
πp1,q1,γ1;r (S) + t · πp2,q2,γ2;r (T − S) : S ∈ Πp1,q1,γ1;r (E,F )

}
≥

inf
{
‖{Sxi}‖strong

p1,q1,γ1
+ t · ‖{(T − S)xi}‖strong

p2,q2,γ2
: S ∈ Πp1,q1,γ1;r (E,F )

}
≥

inf
{
‖{yi}‖strong

p1,q1,γ1
+ t · ‖{Txi − yi}‖strong

p2,q2,γ2
: y1, ..., yn ∈ F

}
=

= K
(
t, {Txi}i , lstrong

p1,q1,γ1
(F ) , lstrong

p2,q2,γ2
(F )
)

, implies that

T(Πp1,q1,γ1;r(E,F ),Πp2,q2,γ2;r(E,F ))
θ,q

≥ ĉ · ‖{Txi}‖(lstrong
p1,q1,γ1 (F ),lstrong

p2,q2,γ2 (F ))
θ,q

.
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But we know that ‖{Txi}‖(lstrong
p1,q1 (F ),lstrong

p2,q2 (F ))
θ,q

≥ ˜̃c · ‖{Txi}‖strong
p,q,γ . Taking the

supremum, over all these {xi}n
i=1 ∈ F (E) , we get

‖T‖(Πp1,q1,γ1;r(E,F ),Πp2,q2,γ2;r(E,F ))
θ,q

≥ c · πp,q;r (T ) .

In conclusion
(
Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )

)
θ,q

⊂ Πp,q,γ;r (E,F ) .

We can further on generalize the Miyasaki operator classes. First we introduce

some vector-valued sequence spaces.

Definition 21. Let 1 ≤ p, q < ∞, −∞ < γ < ∞. The vector sequence {xn}n in E is

weakly (p, q, γ)−summable if the scalar sequences {|〈x∗, xn〉|}n are in lp,q,γ for every

x∗ ∈ E∗. We denote by lweak
p,q,γ (E) the set of all such sequences in E.

Proposition 22. Suppose that 1 ≤ q < p < ∞ and γ < 0, or 1 ≤ q < p < ∞

and 0 < γ such that 1
q −

1
p ≥ γ. Then lweak

p,q,γ (E) is a vector space under pointwise

operations, and the formula

‖{xn}‖weak
p,q,γ := sup

x∗∈UE∗

( ∞∑
n=1

[
n

1
p−

1
q (1 + log n)

γ

|〈x∗, xn〉|
]q) 1

q

defines a quasi-norm ‖·‖weak
p,q,γ : lweak

p,q,γ (E) → R+.

Proof. The first step is to show that the quantity in the right side of the formula

is finite. We shall apply the closed graph theorem like in the case of absolutely

p−summing operators, cf. [5]. Let x = {xn}n ∈ lweak
p,q,γ (E) and associate with it the

map u : E∗ → lp,q,γ given by u (x∗) = {〈x∗, xn〉}n . Note that u is a well-defined linear

map. Consider now a sequence {x∗k}k which converges to x∗0 in E∗.Then for each n,

the scalar sequence {〈x∗k, xn〉}k converges to 〈x∗0, xn〉 . Thus, if we take into account

the fact that
{

n
1
p−

1
q (1 + log n)

γ
}
∈ c0, for which purpose we have made the choice

of p, q and γ, we obtain as a consequence, that u has closed graph. Therefore, u is

bounded. In other words

‖u‖ = sup
x∗∈UE∗

( ∞∑
n=1

[
n

1
p−

1
q (1 + log n)

γ

|〈x∗, xn〉|
]q) 1

q

< ∞.

Now it is easy to check that ‖·‖weak
p,q,γ is a quasi-norm on lweak

p,q,γ (E).

Definition 23. Let 1 ≤ p, q < ∞ and −∞ < γ < ∞. Suppose that 1 ≤ s < r < ∞

and α < 0, or 1 ≤ s < r < ∞ and 0 < α are such that 1
s −

1
r ≥ α. An operator
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T ∈ L(E,F ) is called (p, q, γ; r, s, α)−absolutely summing if there exists a constant

c ≥ 0 such that ‖{Txi}‖strong
p,q,γ ≤ c · ‖{xi}‖weak

r,s,α for every {xi} ∈ F (E) . We denote by

Πp,q,γ;r,s,α (E,F ) the space of such operators acting between E and F.

The smallest number c for which the above inequality holds is denoted by

πp,q,γ;r,s,α (T ) .

Remark 5. It is straightforward to verify that the constant coming from ‖·‖strong
p,q,γ

can be used to prove the triangle inequality and thus πp,q,γ;r,s,α (·) is a quasi-norm on

the space of (p, q, γ; r, s, α)−absolutely summing operators.

Remark 6. Using the domination theorem it is routine to prove that

Πp,q,γ;p,q,γ (E,F ) ⊇ Πq (E,F ) .

Moreover πq (T ) ≥ πp,q,γ;p,q,γ (T ) for every T ∈ Πq (E,F ) .

If the sequence αn =
{

n
q
p−1 · (1 + log n)γ·q

}
is a decreasing one then

Πp,q,γ;p,q,γ (E,F ) is of the type ΠΦ,Ψ (E,F ) , where Φ,Ψ are symmetric norming func-

tion.

The following theorem, which is a representation result for our class of oper-

ators, will be the essential ingredient in our main theorem.

Theorem 24. Let 1 ≤ p, q < ∞ and −∞ < γ < ∞. Suppose that 1 ≤ s < r < ∞

and α < 0, or 1 ≤ s < r < ∞ and 0 < α are such that 1
s −

1
r ≥ α. Then an operator

T ∈ L(E,F ) is (p, q, γ; r, s, α)−absolutely summing if and only if T̂
(
lweak
r,s,α (E)

)
is

contained in lstrong
p,q,γ (F ) , where T̂ : {xi}i → {Txi}i. In this case∥∥∥T̂ : lweak

r,s,α (E) → lstrong
p,q,γ (F )

∥∥∥ = πp,q,γ;r,s,α (T ) .

The proof is similar to the case of p−absolutely summing operators, cf. [5],

so we omit it.

We are now ready to state our main result.

Theorem 25. Let 1 ≤ p, q < ∞ and −∞ < γ < ∞. Suppose that 1 ≤ s < r < ∞

and α < 0, or 1 ≤ s < r < ∞ and 0 < α are such that 1
s −

1
r ≥ α. Let also 0 < θ < 1.

Then

(
Πp1,q1,γ1;r,s,α (E,F ) ,Πp2,q2,γ2;r,s,α (E,F )

)
θ,q

⊆ Πp,q,γ;r,s,α (E,F ) ,
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where 1
p = 1−θ

p1
+ θ

p2
and γ = (1− θ) · γ1 + θ · γ2.

Proof. We shall use an idea owed to A. Pietsch, see [10], Proposition 1.2.6. First

we must prove that
(
Πp1,q1,γ1;r,s,α (E,F ) ,Πp2,q2,γ2;r,s,α (E,F )

)
is an interpolation

couple.

Let T ∈ Πp1,q1,γ1;r,s,α (E,F ) and {xi}i ∈ F (E) . It follows that there exists

a constant c̃ > 0 such that ‖{Txi}‖strong
p1,q1,γ1

≤ c̃ · ‖{xi}‖weak
r,s,α . But we know that

‖{Txn}‖strong
p2,q2,γ2

≤ c · ‖{Txn}‖strong
p1,q1,γ1

. Therefore

‖{Txi}‖strong
p2,q2,γ2

≤ c · ‖{Txi}‖strong
p1,q1,γ1

≤ c · ‖{xi}‖weak
r,s,α .

In conclusion T ∈ Πp2,q2;r,s,α (E,F ) and Πp1,q1,γ1;r,s,α (E,F ) ⊂ Πp2,q2,γ2;r,s,α (E,F ) .

Let now {xi}i ∈ lweak
r,s,α (E) . We define the operator X : T ∈ L(E,F ) →

{Txi}i . It follows from the preceding representation theorem that {Txi}i ∈

lstrong
p1,q1,γ1

(F ), if T ∈ Πp1,q1,γ1;r,s,α (E,F ) and {Txi}i ∈ lstrong
p2,q2,γ2

(F ) , if T ∈

Πp2,q2,γ2;r,s,α (E,F ) . Thus

X : Πp1,q1,γ1;r,s,α (E,F ) → lstrong
p1,q1,γ1

(F ) ,

X : Πp2,q2,γ2;r,s,α (E,F ) → lstrong
p2,q2,γ2

(F ) ,

are linear and bounded.

It now follows from the interpolation Theorems 6 and 8 that

X :
(
Πp1,q1,γ1;r,s,α (E,F ) ,Πp2,q2,γ2;r,s,α (E,F )

)
θ,q

→(
lstrong
p1,q1,γ1

(E) , lstrong
p2,q2,γ2

(E)
)

θ,q
⊆ lstrong

p,q,γ (E)

Hence the assertion follows from the representation theorem.
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