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A FORMULA FOR THE MEAN CURVATURE OF AN IMPLICIT
REGULAR SURFACE

CORNEL PINTEA

Abstract. In this paper we will find a formula for the absolute value of the
mean curvature of an implicit regular surface (S) f(z,y,2) = a, expressed

in terms of the partial derivatives of the function f.

1. Introduction

The most used formulas for the Gaussian curvature or for the mean curvature
of a regular surface are those that are expressed locally in terms of the coefficients of
the first and second fundamental forms.

However for an implicit regular surface (S) f(z,y,2) = a there exists a for-
mula for the Gaussian curvature expressed in terms of the partial derivatives of the

function f, that is,
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In this paper we are going to prove a similar formula for the absolute value of the
mean curvature of an implicit regular surface.

For the mean curvature H of a regular surface S we have the following local

formula
1 eG—-2fF+gFE
H=- — < 2
2 EG — F? (2)
where
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are the coefficients of the first fundamental form and
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are the coefficients of the second fundamental form with respect to the local
parametrization r : U — S, compatible with the orientation of the surface.

Let V C R® be an open set, f : V — R be a differentiable function and
a € Im f be a regular value of f. It is well known that S = f~1(a) is an orientable
regular surface. For p € S, then one of the partial derivatives f, (p), f, (p), f.(p) is
non zero, at least. If f_(p) # 0, for instance, then, according to the implicit function
theorem, the last variable z can be unically expressed by means of the first two
variable z and y. In other words the regular surface S = f~1(a) is locally, around the
point p, the graph of a function z = z(z,y), (x,y) € U, where U is a conveniently
chosen open set. Therefore the mapping r : U — S, r(x,y) = (z,y, 2(z,y)) is a local
parametrization of S at p, namely f(z,y,2(z,y)) = a, V(x,y) € U. This is the type
of local parametrization that we are going to use for all over this paper.

It is very easy to see that 7 x 7),y = i?f which means that the local
parametrization r : U — S, r(x,y) = (x,y, 2(z,y)) of S at p is compatible with the

Vf

orientation oA of S'iff f.(p) > 0 and of course uncompatible iff f_(p) < 0.

In any case the relation

¢G — 2fF + gF

holds.

2. The main formula

In this section we will prove the already anounced formula for the absolute
value of the mean curvature of an implicit regular surface.

Theorem 2.1. Let V C R3 be an open set, f : V — R be a smooth function
and a € Im f be a reqular value of the f. For the absolute value of the mean curvature
H of the implicit regular surface (S) f(x,y,2z) = a, at the point p € S, we have the

following formula

1
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where ?f is the gradient of f, A is the Laplace’s operator and Hess f is the Hessian
of f, all of them being considered at the point p.
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PROOF. Assuming that for p € f~'(a) we have f,(p) # 0, it follows that S
is locally, around the point p, the graph of a function z = z(z,y), (z,y) € U and
consider the above stated local parametrization r : U — S, r(z,y) = (x,y, z(z,y)).

The coefficients of the two fundamental forms are

E:l+zf, F=z -z G:1+zf

e = __Pox f = _ Pey g = Fyy
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Because f(z,y,z(z,y)) = a, ¥ (z,y) € U, it follows that
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(From relations (6) we get
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Replacing the partial derivatives z,,z2,,2,,,2,,,2,, given by the relations (6), (7)in
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the formula (5) we obtain
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=L PP L A fL P2 f 2 42, ]
Therefore for the absolute value of the mean curvature wee have

1
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Corollary 2.2. If V C R3 is an open set, f : V — R is a smooth harmonic
mapping and a € Im f is a regular value of f, then for the absolute value of the
mean curvature of the implicit reqular surface (S) f(x,y, z) = a we have the following

formula:
1

= ————|(Hess ?,? . 8
2\|Vf||3|( NV LV (8)

|H|

3. Example

It is well know that the locus of the orthogonal projections of the center of
the ellipsoid (FE) ‘2—2 + g—j + i—j =1 on its tangent planes is the so called pedal surface

of E, that is the regular surface
S ={(z,y,2) € R¥| (2® + y? + 22)? = a®2% + b%y* + 22?}\{0}.

We will compute the absolute value of the mean curvature of the pedal surface of F
in its points.

For this purpose consider p = (zo, Yo, 20) € S, the function
RN} = R, fz,y,2) = (2° + 9 +2°)° — a®a® = by® — 227

and observe that S = f~1(0).
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The partial derivatives of first and second order of f are

f, =4z(2? +y? + 2%) — 2a%x
[, =4y +y° + 2%) — 2%y
f.=4z2(2? + 9%+ 2%) — 2¢2%2

fmz:4(x2+y2+22)+8x2_2a’2 fLy:nyZSxy fzz:fzzZSxZ
foy = 4(z? 4+ y? + 22) + 8y? — 2b? f,.=1., =8yz
[, =42 + y?* + 2?) + 822 — 262

Therefore in the points (x,y, z) of the regular surface S we have H?f”2 = 4(a*z? +
biy? +c2?), or equivalent H?f” = 2(a*x? +b*y? +c*2?)V/2. Observe that ||€f|| #0
in all the points of the surface S = f~1(0). Therefore the critical set of f doesn’t

intersects the level set S = f~1(0), this being of course an argument on the regularity

of S.
On the other hand Af = 20(2? + y? + 22) — 2(a® + b* + ¢?) and

(Hessf)(VIV )= Lo f? + £, 02+ L2420, £ f, 4 2L 420,00, f. =
= (4(2® + y? + 2%) + 822 — 2a®)[1622 (2% + v + 22)? — 16a%22 (2 + y* + 2%) + 4a’2?)+
+(4(2? +y* + 2°) + 8y — 20*)[16y% (2® + y° + 2°)% — 160%y* (¢ + y* + 2%) + 4b"y°]+
+(4(2? + y? + 22) + 827 — 2¢%)[1622 (22 + y? + 22)% — 16¢*22 (2? + y* + 27) + 4c* 22|+
+16zy[d4z(z? + 32 + 2%) — 2a2x][4y(z? + y? + 2%) — 2a2y]+
+16z2[da(x? +y? + 22) — 2a%x)[4z(2? +y* + 2%) — 2c% 2]+
+16yz[4y(2® + y* + 22) — 2a2y][dz(z? + y* + 2%) — 2¢%2] =
= 48(2? + y? + 22)(a*x? + bry? + c*2?).

Replacing all of these values considered in p, in the formula (4), we obtain

|Hs, (p)| =
2 2 2y0q4 22 4,2 4.2
_ 1 ‘20(12+y2+22)—2(a2+b2+52)748<I0+y0+20)(a zo+b y0+c zo)}:
4(a4x(2) + b4y[2) + c4zg)1/2 0 0 0 4(a4x(2) + b4y[2) + c4z§)
[4(22 +y2 +22) — (a® +b% + 7)) 2 %22 + 022 £ 222 g a® + b2 + c? |
- 2(ate? + bly2 + c122)1/2 atzx 2 +bty2 £ ct22 2 \/a4zg +bty2 + ct22 '
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