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M-LINEAR CONNECTION ON THE SECOND ORDER REONOM
BUNDLE

VASILE LAZAR

Abstract. The T?M x R bundle represents the total space of a time
dependent geometry of second order. In this bundle it is studied a special
class of derivation rules, named M-linear connections.. There are given
their characterization and it is proved their existence. Finally there are

studied geometrical properties of one M-linear connection.

1. Introduction

The study of the time dependent Lagrange geometry (geometry of the reonom
Lagrange spaces ) was imposed from considerations of mechanic ,a systematically
study of this is finding in the M.Anastasiei and H.Kawaguchi paper [1],[2],[3].

On the other hand, research from the last years imposed into attention the
considerations in the superior order geometries where the total space is the prolonga-
tion of k order of the TM tangent bundle of a differential manifold or an associated
bundle named the osculator bundle of %k order ( [5],[8],[13] ). From calculation
reasons we will approach here the case k = 2.

The study of the second order reonom bundle E = T?M x R was done by
us in a previous work([6],[7]).

Let M be a differentiable manifold, dimM = n , x = (z') the local
coordinates in a map (U, ). We are considering T?M the 2-jets bundle to the
tangent curves in z € M. Locally on T?M the coordinates are u = (z%,y*, 2°)

with the following rule of change on the intersection of two local maps:

T =32 (1.1)
0%
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T?M has a structure of fibre bundle over R?" space ,which is not vectorial

one.
The reonom bundle of second order is the bundle of direct product E =
T?M x R, in which variable on R is denoted by ¢ and it is considered in applications
as being the time. In respect to the (1.1) changes on E we will haw also and t=t.
Taking as a base the FE manifold, we will develop a geometrical techniques
of derivation the sections on TE. The tangent space 7T,FE present approaching

difficulties due to the fact that the natural bases { 0 9 9

— = g} it is changin
or Byt 021 ot 8

i

with the two order derivatives of

J

In order to eliminate this ?r:fconvenient we will consider an adapted base of a
nonlinear connection on FE.

Let II; : E — M the canonical projection and II5 the cotangent

map,V?E = Kerll} the vertical subbundle of second order. We are considering

also the bundle Il : £ — TM x R and VE = Kerllj, the vertical subbundle

of first order, that at his turn, is subbundle of the vertical bundle of second order,

o 0
through his natural structure. Local bases in VE and V2E are respectively {@, ;}
o 9 0
d s . .
and {55 5 o)

Definition 1. A nonlinear connection on E is a splitting of the TFE in the

sum TE =V?E @ NE ,where NE will be named the normal subbundle of E.

5 .
Locally, a base in v — N, E distribution is given by {@ = 86; - Zj% —
i 0 0
M 37 IC??} We are imposing further the conditions of global definition of the
4] 4]
adapted fields {67/’} and {@} ,
4 ol ¢ 0 077§

= = (1.2)

- = - and - = rlr—yy
oxt  Oxt dxd oyt Ox* oyl
Consequently, we are obtaining the next changing rules of the nonlinear con-

nection coefficients on FE.

_ om0, OF . 0F ., 1 8T .,
T2 27 Nk i . [ ——— Lyt 1.
Nk oxk 33:’“M oziozk S Ozioxk L 0zt0zI Ok vy (13)

Tk T 25T
—~ 0% ox" . o‘z"

Miga = 5™~ apiaar?
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0

K ozt

and analogue with (1.3) and (1.5) for H] and H? .In consequence we will take

H) = M? and H? = K9 in the following.

=K (1.5)

Giving a nonlinear connection on F is obtaining the next adapted local base

5 & 90 0
or Tk Sz’ Syt 9z Ot
if there are verified the conditions (1.3) ,(1.4) ,(1.5) .

that is changing as the vectors as it results from(1.2)

Considering a nonlinear connection fixed on E , we name d-tensor of (r,s)

type a real function t;ll """ ? (z,v, z,t) that is changing after rule:

oz Ozhe 9z Pads
= B B o

ks t;iz’; (w). (1.6)

On FE we can introduce relatively to the given nonlinear connection , the

following geometrical structures.

, 5 .0 0
el R T R (1.7)
and his dual
) ) k) . ) 0 /
P’T'CZ == ¢ ~ * — . 1
j=dess e rite gy (1.7)
The triplet (F. 9 §t) verifies the conditions : F? = §t ® 9 5t(g)
P "ot ST Mo

=1
and rank F =2n+ 1 and it is named the cotangent structure of second order ([12])

Structure ¢ = F — F3 it is an almost tangent of second order structure on
E ([12]) , rank ¢ = 2n.

The triplet (F™*, %, dt) it is also a cotangent structure of second order named
adjoint to F'.

Analogue ¢* = F* — F3 it is a tangent structure of second order adjoint to

¢ .Easily there can be deduced links between these structures ([6]) ..

2. Linear d-connections on F

Let E = T?M x R be the reonom bundle of second order endowed with a
nonlinear connection conveniently chosen NT = (M, N7, K!) that determines the
TE = VE Q@ HE ® NE decomposition, with the corresponding projectors .A field
X € X(E) will be decomposed in X =vX +hX +nX.
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Definition 2. It is named linear d-connection on E a D linear connection

on E that preserves trough parallelism the distributions VE, HE,NE.

Theorem 1. A linear connection D on E is a d-connection if and only
if there are verified one of the following conditions :

a) (W+h)DxnY =0, (v+n)DxhY =0, (h+n)DxvY =0

b) DxY = vDxvY + hDxhY + nDxnY

¢) Dv=Dh=Dn=0

d) DP; =0,DP; =0 DP5 = 0 where P, = (n+h)—v ,P, = (n+v)—h ,P; =
(v + h) — n there are almost product structure on E.

The proof results from the fact that: DxnY ¢ NE ,DxhY € HE,

DxvY € VE.

Because D is a R-linear application that can be extended to the whole

d-tensors algebra, it results that :

Proposition 2. It is only one operator of covariant derivation D' named

normal derivation thus that :
DYY =D,xY and D% f = (nx)f : VX,Y € X(E), f € F(E). (2.1)

Locally D™ can be expressed the following way :

.0 1§
D5 5ug =hiv g
dxk
) 2 . 4
O 5y sy 22)
dxk
n o 3, 0 00 a0 o 0 0o 9
D% 5 =L nga Thng o D 5 = Lovga T Lo
dxk Sxk

Analogous it is defined the D" covariant h—derivation with the following

local expressions.

5 1.4 0 3 0 0
h _ i h i 0o >~
Di@ T ki Di 0 1 g kg (2:3)
dy* 0z
5 2 .6 0 0 0
Dhe —=F" Dhe — = Flpoo=+ Fo =
0 s T kgt e 5 T fong Ty,
Sy dyk
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and in totally the same way it is introduced DV covariant v—derivation with local

expressions
) ) ) 0 d
DY —_— = L - - DV —_ = L 0 7

0 5 g Do g = Cong T Cong

0zk 0z
) 2 .4 d )

D'y — =C Y4— ; D%y = = Coh— 2.4
0 gy L A Y Coo 5 (24)
0zk ot

v a 3 7 8
Do 5 = C mpa
0zk

The curvatures and torsions of a linear d—connection are written and are

finding their local expressions through the direct calculation.([6])

3. M-linear connection on E

Let D be a linear d— connection on FE with local coefficients given by
(2.1);(2.2);(2.3).
Definition 3. A d— linear connection D on E it is said that it isa M—
linear connection (Miron -connection) if:
1 2 . 3 . 1% 2t 3t gt o 3
Lj=L i =L ji; Fiy=Fj=Fj; Ciyy=C j =C (3.1)
Let F and ¢ the almost cotangent structures of second order and respectively
second order tangent locally given by (1.7) and ¢ = F — F3 Jand (F*,¢*) their
adjoint structures:
Definition 4. a) A D- linear connection on FE is a F-linear connection(
respectively F*) if D =0 and D% = 0 (respectively DF* = O,D% =0).
b) A D- linear connection on E is a (¢, ¢*) -linear connection on E if

DF =DF* =0 andD%:O
¢) A D— linear connection on E is a @—linear connection (respectively

©*— linear connection ) if Dy = 0 (respectively Dp* =0 )

d) A D-— linear connection on E is a (p,¢*) — linear connection if
Dy =Dp*=0

Proposition 3. A D -linear connection on E s a (F,F*) -linear
connection if and only if is a (@, *) -linear connection.
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Proof From DF =0 = DF3=0 = D(F-F3?) =0 = Dp =0 and
from DF* =0 = D(F—F*)=0 = Dy* =0. Reciprocal , we have »*F? =0 and
F3¢* = 0 (taking into account that F3(X,) € V,E) .It results that DF3 =0 and
together with Dy = 0, Dyp* =0 we are obtaining that D(p+ F?3) = DF =0 and
(Dy* + F3) = DF* = 0.

Proposition 4. A (F.F*)-linear connection is a d—linear connection on
E (F,F*).

Proof:ls a (F,F*)— linear connection is a (p,¢*)—linear connection and
using the fact that v = ©?p*? ,0*2 = nand ¢*p — ¢*2p = h it results that

Dn = Dh=Dh=01is a d— linear connection on E .

Theorem 5. A D linear connection on E is a M —linear connection if
and only if is a (F, F*)-linear connection .

Proof:From the proposition 3.2 it results that if D is a (F, F*)-linear
connection than it is also a d-linear connection.

Because

L5 F)(%):(Dna F)(%F(D"g F)(%)—FD”(S %:

Sk Sk Sk oxk

5 3t 5 27 3§

= D"i Sy Ly, F(@) = (Ljx — ij)éyi'
oxk

) 2 3
We are obtaining that (D )(5—3) =0 & L=L .In an analogue way, taking these
x

dxk
values of the adapted base fields, yields that DF = DF* =0 ,and hence D is a M —
linear connection on F.

We are waking the notifications F? =pand ¢ =1 —p.

Theorem 6. There exists M—linear connections on E. One of them is

given by :
B B B B B
Dx Y =Dyx qY+ Dgx pY+ Dpx qY+ Dpx pY (3.2)

where:

B h h
Dgx qY = > [(v+ 2) X,cp*2y} +v [(n—&— 2) X,UY] +
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on [(n—&— Z) X,cp*hX} + ¢*v [(n—&— ;L) X,cth] + p*2 [(n—&— ;L) X,nY]

B

Dgx pY =pleX , pY] (3.3)
B 1.9 2 #2 2 h h
Dpx ¢ = 5{p (X ,0°Y] + ¢** [pX ,%Y] +(5+n) |pX (0 + Y|+

1
+ Z{son [pX , 0" hY ]+ p™v [pX ,hY].}
0

B 0 0
Dpx pY =V,x pY — 0t(X)6t(Y) V g Er (3.4)

ot

and % is a linear connection on FE .
Proof. Trough the direct calculation it is verified that D is a linear
connection and that Dy = Dp* =0,s0 D is a M — linear connection.
Given to X and Y values of the adapted base, from(3.3) results :
Corollary 7. The following functions on FE
ON} p OME

oML
ij 9z Ml + 9zt ij 9zt ij
Liy=L{;=F};=CH=C3=C=0. (3.5)

defining the coeflicients of a M —linear connection on E ,named Berwald connection
in the reonom bundle of second order

An interesting problem is the determination of the M —linear connection
compatible with respect to a given metric structure on FE . We will approach this in

a coming paper .
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