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INVARIANT SETS OF RANDOM VARIABLES IN COMPLETE
METRIC SPACES

J.KOLUMBAN AND A. SOOS

1. Introduction

The most known fractals are invariant sets with respect to a system of
contraction maps, especially the so called self-similar sets. In a famous work, Hutchin-
son [6] first studied systematically the invariant sets in a general framework. He proved
among others the following: Let X be a complete metric space and f1,..., fm : X — X
be contraction maps. Then there exists a unique compact set K C X such that
K= U:L fi(K).

If the maps f; are similitudes, this invariant set K is said to be self-similar.

Our aim in this work is to generalize the above theorem of Hutchinson for
random variables in complete metric spaces using some results from the theory of
probabilistic metric spaces.

The theory of probabilistic metric spaces, introduced in 1942 by K. Menger
[11], was developed by numerous authors, as it can be realized upon consulting the
list of references in [2], as well as those in [14]. The study of contraction mappings for
probabilistic metric spaces was initiated by V. M. Sehgal [16],[17], and H. Sherwood
[19].

Falconner [4],Graf [5], and Hutchinson and Riischendorf [6] used contraction
methods to obtain random self-similar fractal sets by essential applying ordinary
metrics to a.e. realization in the random setting. The same ideas were used by
Arbeiter[1], Olsen [12], and Hutchinson and Riischendorf [7],[8],[9], to obtain random
self similar fractal measures. In these works a finite first moment condition of the
distance function is essential. Using probabilistic metric space techniques, we can

weak this first moment condition, as will be shown for fractal sets in Section 4.
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2. Preliminaries

Let R denote the set of real numbers and Ry := {r € R : z > 0}.
A mapping F :R— [0,1] is called a distribution function if it is non-decreasing, left
continuous with inf F' = 0.(see [2]) By A we shall denote the set of all distribution
functions F. Let A be ordered by the relation ”<”: F' < G if and only if F(t) < G(t)
for all real t. Also F < G if and only if F' < G but F # G. Weset AT :={F € A:
F(0) =0}.
Throughout this paper H will denote the Heviside distribution function de-
fined by

B 0, =<0,

1, =z>0.

Let X be a nonempty set. For a mapping F : X x X — AT and z,y € X we
shall denote F(x,y) by Fy ,, and the value of F, , at t € R by F, (), respectively.
The pair (X, F) is a probabilistic metric space (briefly PM space) if X is a nonempty
set and F : X x X — AT is a mapping satisfying the following conditions:

19 F, ,(t) = Fy4(t) for all z,y € X and t € R;

20, F,,(t) =1, for every t > 0, if and only if z = y;
30.if F, y(s) =1 and F, ,(t) =1 then F, ,(s+t) = 1.

A mapping T : [0,1] x [0, 1] — [0,1] is called a ¢-norm if the following condi-
tions are satisfied:

4%, T(a,1) = a for every a € [0,1];

5°. T'(a,b) = T(b,a) for every a,b € [0,1]

6°. if a > c and b > d then T'(a,b) > T(c,d);

7°. T(a,T(b,c)) = T(T(a,b),c) for every a,b,c € [0,1].

A Menger space is a triplet (X, F,T), where (X, F) is a probabilistic metric
space, where T is a t-norm, and instead of 3° we have the stronger condition

80. Fpy(s+1t) > T(Fy.(s),F. (1) for all z,y,2 € X and s,t € Ry.
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The (¢, €)-topology in a Menger space was introduced in 1960 by B. Schweizer
and A. Sklar [13]. The base for the neighbourhoods of an element 2 € X is given by

{Us(t,e) © X 1t >0,¢ €]0,1[},

where
Us(t,e) :={y € X : F,(t) >1—€}.

If the t-norm T satisfies the condition
sup{T'(a,a) :a €[0,1]} =1,

then the (¢, €) -topology is metrizable (see [15]).

In 1966, V.M. Sehgal [16] introduced the notion of a contraction mapping
in PM spaces. The mapping f : X — X is said to be a contraction if there exists

r €]0, 1] such that
Fr@), s (1t) = Fuy(t)

for every z,y € X and t € R;..

A sequence (,,)nen from X is said to be fundamental if

lim Fy, o, (t)=1

n,Mm—00

for all ¢ > 0. The element = € X is called limit of the sequence (x,)nen, and we
write limy, 00 pn = @ Or Ty, — , if im, oo Fy 4, (t) = 1 for all £ > 0. A probabilistic
metric (Menger) space is said to be complete if every fundamental sequence in that
space is convergent.

Set

Dt ={F e At :supF(t) = 1}.
teER

In the following we always suppose that (X, F,T) is a Menger space with F : X x X —
DT and T is continuous.
Let A be a nonempty subset of X. The function D4 : R — [0, 1] defined by
DA(t) :=sup inf F,,(s
A(E) = sup inf Py, (s)
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is called the probabilistic diameter of A. It is easy to check that D4 € A*. The set
A C X is probabilistic bounded if D4 € DT. If B and C are two subsets of X with
BNC #0, then

Dpuc(s +1) > T(Dg(s), Do(t)), s,t € R (1)

(see [3, Theorem 10]). In particular, every finite subset of X is probabilistic bounded.

We also define the probabilistic radius E4 : R — [0,1] of the set A:

E4(t) :=supsup inf F, ,(s).
s<t yc ATEA

By definition it is easy to verify the following property:

Lemma 2.1.

EA(t) > DA(t),

and

Da(2t) > T(Ea(t), Ea(t)), forallt> 0.

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompeiu
distance between A and B is the function Fs 5 : R — [0, 1] defined by

Fa p(t) :==supT(inf sup Fy 4(s), inf sup Fy 4(s)).

s<t z€AyeB YEB e A

Lemma 2.2. For the nonempty subsets A and B of X we have

EA(tl + 2t2) > T(DB(t1)7FA,B(t2)) fOT‘ all t1,t2 > 0.

Proof. Let z,y € A, z,u € B and 51,5, > 0. By 8° we have
Fz,y(sl + 232) Z T(Fx,z(sl + 82)7 Fz,y(SQ)) Z

> T(T(Fyu(s2), Fu,Z(Sl))v Fy,Z(SQ)) > T(T(Fx,u(52)v Dg(s1)), Fy,Z(SZ)) =
=T(Dp(s1)), T(Fou(s2), Fy:(s2)))-

Simple calculations show

sup inf F, ,(s1 + 2s2) > T(Dp(s1),T(inf sup F, u(s2), inf sup F, .(s2))).
yEATEA €A ycB z2€EB yecA
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If we take the supremum by s; < t; and sg < ta we obtain the required inequality. [
Proposition 2.1. IfC is a nonempty collection of nonempty closed bounded
sets in a Menger space (X, F,T) with T continuous, then (C,Fc,T) is also Menger
space, where F¢ is defined by Fo(A,B) := Fa p for all A,BeC .
Proof. See [3],[10]. O

Proposition 2.2. Let T,,(a,b) := max{a +b— 1,0}. If (X,F,Ty) is a
complete Menger space and C is the collection of all nonempty closed bounded subsets
of X in (t,e)— topology, then (C,Fc,Ty) is also a complete Menger space.

Proof. Let (A, )nen be a fundamental sequence in C and let

A={reX:VneN, 3z, € A,,Vt >0, lim F,, ,(t)=1}. (2)

Let A denote the closure of A. By [3, Theorem 15] we have Fa, o = F, A SO it is
enough to show that (i) lim, o Fa, a(t) =1, for all t > 0, and (ii) A € C.
(i) Let t > 0 and € > 0 be given. Then there exists n.(t) € N such that
n,m > ne implies Fia, a,, (%) > 1—%. Let n > n(t). We claim that Fa, a(t) > 1—e.
If + € A, then there is a sequence (xg)ren with zp € A and
limg oo Fopw(%) = 1. So, for large enough k > nc(t), we have Fy, .(%) > 1 — <.
Since Fa, a,(%) > 1— %, there exist y € A, such that F,, ,(%) > 1— <. By 8" we

have F, (%) >1— £, hence

€
sup inf sup Fp,(s) >1— —. 3
sup fnf, sup wy(8) 5 (3)

Now suppose that y € A, is arbitrary. Choose integers k1 < ko < ... < k; < ... so

that k; = n and

t €
FAImAki(ﬁ) >1- Stz

for all k > k;. We have inf.ea,, Sup,ca, F, .(3%r) > 1— 55 . Then define a sequence
(yr) with y,, € Ay as follows. For k < n, let y, € Agbe arbitrarily and y,, = y. If
yi, has been chosen and k; < k < ki1, take y, € Ay with Fykyk(zz%) >1 - 5%
Then, for k; < k < kiy1 < .. <k; <l <kjpq, we have

t t t t
Fyz,yk(g) 2 Fyk,ykl (2i+1) + Fyki7yki+1 (21‘4_2) + ot Fyk]-,l,ykj (2j+1 )+

t . €
+Fyk]-,yz,(2jﬁ) —(-i+t1)>1- ST
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Let 0 < r,0 < n <1, and choose ¢ so that 21 <rand 555 <7n. We have

)>1—L>1—n.

t
Fyk’yz (T) > Fyk’yz( 9i+1

2i
Hence (yi) is a fundamental sequence, so it converges. Let = be its limit. Therefore

x € A, and we have

t t t
Foy(5) 2 Foy () + Fyoy(7) = 1.
Select k > n such that F,,, (%) > 1— 5. Since F,,, () > 1 — %, it follows that
F, (%) > 1 — 5. Therefore we have
€
sup inf sup F, ,(s) >1— —. 4
s<It)y€An meg ,y( ) 2 ( )

By (3), the lather implies

Fa, a(t) =supTy,(inf sup F, ,(s), inf sup F, ,(s)) >1—e.
s<t TEA yEA, YEAn zc A

Thus lim,, o Fa, 4(t) = 1, for all £ > 0,hence part (i) is proved..
(ii) Taking € = 1 in the last argument, we have proved that A is nonempty.
Next we have to show that A is bounded. Since lim,_,oc Fa, a(t) = 1,
for all € > 0 and ¢y > 0 there exists ng € N such that, for every n > ng, we have
infyeasupy,ea, Fow(to) > 1—eand infyca, sup,eca Firy(to) > 1—€. The set A, being
probabilistic bounded, for all € > 0 there is t. > tg such that inf,, ,ea, Fuo(te) > 1—e€.

On the other hand, x,y € A there exist u,v € A,, such that
Fpu(to) >1—€, F,,(to) >1—e.
We have
Froy(Bte) > T (Fau(te), Fuy(2te)) > T (Fy w(to), T (Fuw(te), Fyy(to))) > 1 — 3e.

Therefore D 4(3t.) > 1— 3¢, consequently we have sup,cg Da(t) = 1. By [3], it follows
that D4 = D, hence A € C. O

3. Invariant sets in E-spaces

The notion of E-space was introduced by Sherwood [20] in 1969. Next we
recall this definition. Let (€2, K, P) be a probability space and let (M, d) be a metric
space. The ordered pair (€, F) is an E-space over the metric space (M,d) (briefly,
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an E-space) if the elements of £ are random variables from Q into M and F is the

mapping from &£ x & into AT defined via F(z,y) = F,,, where

Fpy(t) = P({w € Q| d(z(w), y(w)) <t})

for every t € R. Usually (Q, K, P) is called the base and (M, d) the target space of
the E-space. If F satisfies the condition

Fla,y) # H, for x#y,

with H defined in section 2, then (€, F) is said to be a canonical E-space. H. Sherwood
[20] proved that every canonical E-space is a Menger space under T' = T,,,, where
Tm(a,b) = max{a + b — 1,0}. In the following we suppose that E is a canonical
E-space.

The convergence in an £-space is exactly the probability convergence. The
E-space (£, F) is said to be complete if the Menger space (£, F,T;,) is complete.

Proposition 3.1. If (M,d) is a complete metric space then the E-space (€, F)
s also complete.

Proof. This property is well-known if M = R (see e.g. [21, Theorem
VI1.4.2.]). In the general case the proof is analogous and we omit it. (I

Proposition 3.2. If A is a nonempty probabilistic bounded subset of £ and

f: € — & is a contraction with ratio r then f(A) is also probabilistic bounded, where

f(A) ={f(x) [z € A},

Proof. We have

D t) = su inf F,,(s)=
f(A)() s<It)u7U€f(A) w(8)

=sup inf P({w e Q| d(f(x)w),f(y)(w)) <s}) =

s<t T,YEA
> sup inf P({w € Q| d(z(w), y(w)) < 2}) >
s<t T,YEA T
>sup inf F,,(s) =Da(t).
s<t T,YEA
Since sup;~.q Da(t) = 1, it follows that sup,~ Dy(a)(t) = 1. O

The main result of this paper is the following:
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Theorem 3.1. Let (£,F) be a complete E- space, N € N*,, and let
fiss v+ € — & be contractions with ratio ry,..rn, respectively. Suppose that

there exists an element z € £ and a real number v such that
P({w € Qld(=(w), fi(=()) = 1)) < 1, (5)

for alli € {1,.., N} and for all t > 0. Then there exists a unique nonempty closed
bounded subset K of £ such that

FAE)U ..U fx(K) = K.

Proof. Let ® : 2¢ — 2¢ be defined by
®(A) = fi(A) U fo(A) V..U fn(4).

Let Ag = {z} and A4,, = ®(A,_1) for n > 1. Let r = max{ry,...,rn}, J be the finite
alphabet {1,.., N}, and, for 0 = 0y...0,, € J", set fo = f5, © fo, 0...0 f5, . We have:
Ap = Ugen fo(Ao).

First we show that (A, )nen is a fundamental sequence in (C, Fe,Ty,).

Since A4 = ®"(Ag) and A, = ®"(A4p), we have

inf sup Fy.(s) = inf sup Fy ().
ucA, VEAR 1 n UEUye gn fo(Ao) vEU e gn fo(Ar)

Observe, there exists o’ € J" such that

inf  sup Fy,(s)= inf sup Fuo(s) >
UEAN yE Ay (=) u€for(A0) vEUy e fo(Ar) )
> inf sup Fy,.(s) = inf sup Fy, L (8) >
S TR A (s) = inf sup By, @5, (1) (5)
> sup P({w € Q| rd(=(w), y(w)) < s}) =
yEAL
= max P{w € Q] rd(z(w),y(w)) < s}) >
YEU_ sk fr(Ao)

> max P({we Q] rd(z(w),y(w)) < s- (1+\/77+...+\/77k*1)(17\/;)}) >

YEU_¢ sk fr(Ao)

2 max P({w € Q] r*[d(2(w), fr, ((w))) + d(fr, (2(W)); frims (2(w)) + -

e d(frym s (2(0)), e @) < 8- (L4 VF A+ VT (L= VP)) 2
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> max[P({w € Qf d(2(w), fr, (2(w))) <

TeJk rh

+P({w € Q d(fr (2(w)), frim (2(w))) < W}) n
k—1
- P({w e Qd(fr .7, (2(W)), fri..m (2(w))) < %})] k-1 >
max[P({w € Q) d(=(), fr, () < 5(1;711\/70})+

FP({w € O rd(2(), fr(2(@)) < LTV

k-1
LP({w e Q) (= (w), fi, () < SETYIVT gy 2

/’n’ﬂ

— 1 min [P({w € 9] d(2(@), fn (2(@)) = JE= Vg,

reJm rm

FP({w € Q] d(=(w), fo(2(w))) = SUVIVTY
k—1
FP({w € ] d(2(), fr (2(w)) < SEZVIOVT gy

rn+k—1
1 F1/2 F(E=1)/2
>1 —~.ph et >
= ”TQuﬁﬁw—@+*wuﬁQ
/r,’ﬂ
1-— .
T

Since

we have, for ¢ > 0,

lim FAmAk+n(t) =1,

uniformly with respect to k. The space (€, F) being complete, (4,) is convergent.
Let K be its limit.
Next we show that K is a fixed point of ®. Fori € {1,.... N}, z € A,,_1,y € K

and s > 0, we have
Fri(@).£:)(8) 2 Fay(5)-

There exists ¢ € J such that

inf sup Fy(s) = inf sup F.(s) >
uE@(An,l)UE@(K) ( ) uEﬂ(An—l)UEQ(K) ( )

> inf Fy . > inf F, .
S i fi(@)fiw)(8) 2 dnf sup zy(8)
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In a similar way

inf sup  Fy.(s) > inf sup Fp,(s).
UECI)(K) ueq)(An—l) uv( ) yeKweAn71 my( )

Then it follows
t t
FA,I,,@(K)(i) > FAn_l,K(E) for all t > 0.
Using 8° one obtains
Freo(0)(t) 2 T (Fi 4, (5) Faa00)(3)) = T (Fi 4, (5), Fa, i (5))-
Since hmn_wo An = K7 we have
Fr o) (t) =1 forall t>0,
therefore
K =9(K).

For the uniqueness we suppose that there exist closed and bounded K and
K’ such that ®(K) = K and ®(K') = K'. Forz € K,y € K', 0 € J*, and s > 0,

we have

s
Ffp @), o) (8) 2 Foy(25).
Let ¢’ € J™ be such that
inf sup Fyu(s)= inf sup Fyu(s) >
VEUgegn fo (K') UEUgye gn fo (K) zEfL(K') UEUgyegn fo (K)
s
> inf sup F,(s) > inf sup F, ,(—).
vefor (K') uef, ,(K) () YEK zeK xy(r")
Similarly,
s
inf sup Fyu(s) > inf sup Fp y(—).
VEUg e gn fo (K') weUyegn fo(K) UJJ«( ) e K yeK! x y(,r.n)

Since K = ®"(K) = Ugeyn fo(K), K' = ®"(K') = Uyen fo (K'), we have

t
Fy k/(t) > FK,K’(Tn

) for all¢ > 0.
Using lim,, .o, 7™ = 0, we have
FKK/(t) =1 forallt > 0,

therefore K = K'. O
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Corollary 3.1. Let (€, F) be a complete E- space, and let f : € — & be a

contraction with ratio r. Suppose there exists z € £ and a real number v such that
P({w € Q| d(2(w), f(2)(w)) > t}) < % for allt > 0.

Then there exists a unique xg € € such that f(xg) = xo.
Remark: If the mean values [, d(z(w), fi(x(w)))dP for i € {1,...,N} are
finite, then by the Chebisev inequality, condition (5) is satisfied. However, the condi-
)

tion (5) can also be satisfied for [, d(z(w), f(z(w)))dP = oo. For example, let Q =]0, 1]
w(w)
+

with the Lebesque measure and let f(x) = Then for z(w) = 0, the above

1
=.

expectation is oo, but, for v = 1, the condition (5) holds.

As in [6], the invariant set can be modeled by strings. Let N > 1, and define

{1,..., N} = Ugen{1, ..., N}¥.

Ifr e {l,.,N}¥, 7 = 1.79...7, then | 7| = k is the length of 7. Set
fri&—=E& fri=frnofnonof,  HACE weset Ay 4 = fr(4) .

Let {1,..., N}N carry the product of the discrete topology on {1, ..., N'}. For
oce{l,. ,N}*U{l,..,N}N with k< | o] let o), = 01.02...0 be the restriction of &
to its first k entries.

Let K be the invariant set from Theorem 3. As in [6], we can show that

a) Koy.opn =g, =1Ko1 ororin

b) K DKy Do DKoy op D ooee

Proposition 3.3. Let the hypotheses of Theorem & be satisfied. Then, for

all t > 0, we have

li?’nkﬂoong“C (K) (t) =1.

Proof. Let A, be the set defined in the proof of Theorem 3. If f is
an r-contraction, then Fyia,) r(x)(t) > Fa, x(t) for t > 0. Let ¢ € {1,..,N}* U
{1,..., N}N. Since lim,, o0 Fa, x(t) = 1 for t > 0, it follows that

m Fy 4., 1,05 (t) =1 (6)

n—oo
uniformly with respect to k.
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We have

D t) =su inf P{w e Qld(z(w),y(w)) < s}) =
) =sup ot P({w € 9] da().y(w) < 5)

=sup inf P({w € Q| d(fo, .0, (W)(W); for..00(0)(w)) <}) >

s<t U,VEAR
>sup inf PH{w € Q| ry .10, d(u(w),v(w)) < s}) >

s<t W,VEA,

>sup inf P({w € Q| rFd(u(w),v(w)) < s}) >

s<t U,VEAR
s
>s i
> zligwljggn[P({w € Q] d(u(w),v(w)) < 5 ——H+

+P({w € Q] d(2(w),v(w)) < 7P~ 12

Hence

klim Dy a,(t)=1forallt>0andn € N.

By Lemma 2.2 we have

Dy, ) t) = Dy, a)(6) + Fy, o An), fo00(50) () — 1.

Using (6) it follows the assertion. O

Proposition 3.4. For all o € {1,...,N}N there ewists a unique element
Te € MnenKo,. o,

Proof. For every n € N we choose an element z,, € K, ,,. Let m <n,

then z,,, xn € Ky, 5, . Since
limkﬁoona‘k(K)(t) =1fort >0, and e > 0,
there exists mg € N such that, for all m > my,

inf Plw e Qd(z(w),y(w)) <t} >1—e.

Y€Ky . om
It follows, for m,n > mg, P({w € Q|d(zn(w), zm(w)) < t}) > 1—¢, therefore (2, )nen
is a Cauchy sequence. Since the space (€, F) is complete, it follows the convergence
of (¥p)nen. Let 2, be its limit. Then v, € NpenKo, o, -

Since lim;, .o D (t) =1 for all t > 0, it follows that z, is the unique

T1...0n

element of the intersection. O
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Proposition 3.5. The map 7 : {1,..., N}N — K given by 7(0) = z, is a
continuous map onto K.

Proof. Let 0 = 01...0,... € {1,.., N}N and let ¢ > 0. Since 7(0) = z, €
MNnenKo, ..o, and lim, o Dz (t) = 1 for all ¢ > 0, there exists ng € N such

n 1---0n

that

Dy (t) > 1 — e for all n > ny.

T1...0n

For y € K,, ., we have
P({w e Qld(y,n(0)) <t}) >1—¢,

hence Ko, ..o, C Un(s)(t;€) for n > ng. Since Ky, ..o, contains the image of the open
set {8|6; = 04,if i < n}, it follows 7 is continuous.

Let K' = w({1,..., N}N). Observe K’ C K and K’ is a compact set. We show
that K’ is an invariant set. If y € K’, then there exists o € {1,..., N} such that
y=m(0) € f,,(K'). So K' C Ul_, fi(K').

If y € Ul_, fi(K") then there exists j € {1,...,1} such that y € f;(K’), hence,
for any o’ € {1,..., N}N, y = f;(n(0")) = n(jo’) € K.

Since the closed bounded invariant set is unique, it follows K = K’. 0

Corollary 3.2. The invariant set in Theorem 3 is compact.

4. Self similar fractal sets

Recently Hutchinson and Riischendorf [9] gave a simple proof for the ex-
istence and uniqueness of invariant random sets using the L°°-metric. The under-
lying probability space for the iteration procedure is generated by selecting inde-
pendent and identically distributed scaling laws. A scaling law S is an N-tuple
(S1,...,8n), N > 2, of Lipschitz maps S; : R® — R"™. Let r;, = LipS;. A ran-
dom scaling law S = (S1,S2, ..., Sn) is a random variable whose values are scaling
laws. We write S = distS for the probability distribution determined by S and 2 for
the equality in distribution.

If K is a random set, then the random set SK is defined (up to probability
distribution) by

SK = U;S; KW,

61



J. KOLUMBAN AND A. SOOS

where S, KO, ..., K(™) are independent of one another and K <4 K.
We say K satisfies the scaling law S, or is a self-similar random fractal set,
if
SK & K, or equivalently SK = K.

Let C be the set of random compact sets K such that
esssup dy (K%, 05) < 0o, (7)

for some, and hence any, fixed compact set B C R™, where dy; is the hausdorff metric.
By dp we mean the random set equal a.s. to B. In [9], Hutchinson and Riischendorf
generate random sets in the following manner:

Beginning with a nonrandom set K one defines a sequence of random sets
SKo = U;Si Ko,
S?Ko = U, jSi 0 ) Ko,
S*Ko = Us j.1Si 0 S o S Ko,
etc.: where St = (5%, 5%, ..., 5%), for i € {1,..., N}, are independent of each other and
of S, the 8% = (Sij,S%'j,...,S%), for i,j € {1,..., N} are independent of each other
and of S and Si, etc.

A construction tree ( or a construction process ) isamap w : {1,..., N}* = T,
where I is the set of (nonrandom) scaling laws. The sample space of all construction
trees is denoted by Q. The underlying probability space (Q, K, [3) for the iteration
procedure is generated by selecting identical distributed and independent scaling laws
w(o) 2 S for each o € {1, ..., N}* (see [9]). It is well known the following result:

Theorem 4.1. ([4],[5],[9]) If S = (51,52, ..., SN) is a random scaling law
with

A:i=esssup ™ < 1 (8)

(where r¥ = max; LipSy ), then for any (nonrandom) compact set Ko,

k

1-A

esssup dp(SKy, K*) < esssup dy(Ko,SKy) — 0

as k — oo, where K* does not depend on Ky. In particular, S* Ky — K* a.s.
Moreover, up to probability distribution, K* is the unique random compact
set which satisfies S.
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However, using contraction method in probabilistic metric spaces,instead of
(6) we can give weaker conditions for the existence and uniqueness of invariant sets.
Theorem 4.2. Let £ be the set of nonempty random compact sets A C R",
and let S be a random scaling law with A = esssup, r“ < 1. Suppose there exists

Z € £ and a positive number v such that
P({w e Q| dy(Z(w),S(Z(w))) > t}) < % for allt > 0. 9)

Then there exists K* € £ such that S(K*) = K*.

Moreover, K* is unique up to probability distribution.

Proof. Define f: £ — &, f(A) =SA. For ABe &, AL A B LBic

{1, ..., N}, one checks that
Fya),58)(t) = PHw € Q| dn(f(A), f(B)) <t}) =
= P({w € Q] dy (U1 Si(w)(A' (@), UL, 8i () (B' (w))) < t}) >
> P({w € 0 A max dy (A1), B'(w)) < t}) =
t
=P{{w e Q| N dy(A(w), B(w)) < t}) = FA’B(X) for all t > 0.
It follows that f is a contraction with ratio A and we can apply the Corollary 3.1 for
r = A. For the uniqueness, let C the set of probability distribution of members of C,
i.e.
C = {distA|A € C}.
We define on C the probability metric by
Fap(t) = supsup{Fa (s)|4 L A, BLBY).
s<
It is easy to verify that S is a contraction map:
t
Fsa,sp(t) > FA’B(X) for all t > 0.
Let K* and K** such that
SK*=K"and SK™ = K.
As in the proof of the Theorem 3, one can show that

Ficx g+ (t) = 1 for all t > 0. O

Remark. If condition (6) is satisfied, then (9) holds.
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