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INVARIANT SETS OF RANDOM VARIABLES IN COMPLETE
METRIC SPACES

J.KOLUMBÁN AND A. SOÓS

1. Introduction

The most known fractals are invariant sets with respect to a system of

contraction maps, especially the so called self-similar sets. In a famous work, Hutchin-

son [6] first studied systematically the invariant sets in a general framework. He proved

among others the following: Let X be a complete metric space and f1, . . . , fm : X → X

be contraction maps. Then there exists a unique compact set K ⊆ X such that

K =
⋃m

i=1 fi(K).

If the maps fi are similitudes, this invariant set K is said to be self-similar.

Our aim in this work is to generalize the above theorem of Hutchinson for

random variables in complete metric spaces using some results from the theory of

probabilistic metric spaces.

The theory of probabilistic metric spaces, introduced in 1942 by K. Menger

[11], was developed by numerous authors, as it can be realized upon consulting the

list of references in [2], as well as those in [14]. The study of contraction mappings for

probabilistic metric spaces was initiated by V. M. Sehgal [16],[17], and H. Sherwood

[19].

Falconner [4],Graf [5], and Hutchinson and Rüschendorf [6] used contraction

methods to obtain random self-similar fractal sets by essential applying ordinary

metrics to a.e. realization in the random setting. The same ideas were used by

Arbeiter[1], Olsen [12], and Hutchinson and Rüschendorf [7],[8],[9], to obtain random

self similar fractal measures. In these works a finite first moment condition of the

distance function is essential. Using probabilistic metric space techniques, we can

weak this first moment condition, as will be shown for fractal sets in Section 4.
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2. Preliminaries

Let R denote the set of real numbers and R+ := {x ∈ R : x ≥ 0}.

A mapping F :R→ [0, 1] is called a distribution function if it is non-decreasing, left

continuous with inf F = 0.(see [2]) By ∆ we shall denote the set of all distribution

functions F. Let ∆ be ordered by the relation ”≤”: F ≤ G if and only if F (t) ≤ G(t)

for all real t. Also F < G if and only if F ≤ G but F 6= G. We set ∆+ := {F ∈ ∆ :

F (0) = 0}.

Throughout this paper H will denote the Heviside distribution function de-

fined by

H(x) =

 0, x ≤ 0,

1, x > 0.

Let X be a nonempty set. For a mapping F : X ×X → ∆+ and x, y ∈ X we

shall denote F(x, y) by Fx,y, and the value of Fx,y at t ∈ R by Fx,y(t), respectively.

The pair (X,F) is a probabilistic metric space (briefly PM space) if X is a nonempty

set and F : X ×X → ∆+ is a mapping satisfying the following conditions:

10. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;

20. Fx,y(t) = 1, for every t > 0, if and only if x = y;

30. if Fx,y(s) = 1 and Fy,z(t) = 1 then Fx,z(s + t) = 1.

A mapping T : [0, 1]× [0, 1] → [0, 1] is called a t-norm if the following condi-

tions are satisfied:

40. T (a, 1) = a for every a ∈ [0, 1];

50. T (a, b) = T (b, a) for every a, b ∈ [0, 1]

60. if a ≥ c and b ≥ d then T (a, b) ≥ T (c, d);

70. T (a, T (b, c)) = T (T (a, b), c) for every a, b, c ∈ [0, 1].

A Menger space is a triplet (X,F , T ), where (X,F) is a probabilistic metric

space, where T is a t-norm, and instead of 30 we have the stronger condition

80. Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+.

50



INVARIANT SETS OF RANDOM VARIABLES IN COMPLETE METRIC SPACES

The (t, ε)-topology in a Menger space was introduced in 1960 by B. Schweizer

and A. Sklar [13]. The base for the neighbourhoods of an element x ∈ X is given by

{Ux(t, ε) ⊆ X : t > 0, ε ∈]0, 1[},

where

Ux(t, ε) := {y ∈ X : Fx,y(t) > 1− ε}.

If the t-norm T satisfies the condition

sup{T (a, a) : a ∈ [0, 1[} = 1,

then the (t, ε) -topology is metrizable (see [15]).

In 1966, V.M. Sehgal [16] introduced the notion of a contraction mapping

in PM spaces. The mapping f : X → X is said to be a contraction if there exists

r ∈]0, 1[ such that

Ff(x),f(y)(rt) ≥ Fx,y(t)

for every x, y ∈ X and t ∈ R+.

A sequence (xn)n∈N from X is said to be fundamental if

lim
n,m→∞

Fxm,xn
(t) = 1

for all t > 0. The element x ∈ X is called limit of the sequence (xn)n∈N, and we

write limn→∞ xn = x or xn → x, if limn→∞ Fx,xn
(t) = 1 for all t > 0. A probabilistic

metric (Menger) space is said to be complete if every fundamental sequence in that

space is convergent.

Set

D+ = {F ∈ ∆+ : sup
t∈R

F (t) = 1}.

In the following we always suppose that (X,F , T ) is a Menger space with F : X×X →

D+ and T is continuous.

Let A be a nonempty subset of X. The function DA : R → [0,1] defined by

DA(t) := sup
s<t

inf
x,y∈A

Fx,y(s)
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is called the probabilistic diameter of A. It is easy to check that DA ∈ ∆+. The set

A ⊆ X is probabilistic bounded if DA ∈ D+. If B and C are two subsets of X with

B ∩ C 6= ∅, then

DB∪C(s + t) ≥ T (DB(s), DC(t)), s, t ∈ R (1)

(see [3, Theorem 10]). In particular, every finite subset of X is probabilistic bounded.

We also define the probabilistic radius EA : R → [0, 1] of the set A:

EA(t) := sup
s<t

sup
y∈A

inf
x∈A

Fx,y(s).

By definition it is easy to verify the following property:

Lemma 2.1.

EA(t) ≥ DA(t),

and

DA(2t) ≥ T (EA(t), EA(t)), for all t > 0.

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompeiu

distance between A and B is the function FA,B : R → [0,1] defined by

FA,B(t) := sup
s<t

T ( inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)).

Lemma 2.2. For the nonempty subsets A and B of X we have

EA(t1 + 2t2) ≥ T (DB(t1), FA,B(t2)) for all t1, t2 > 0.

Proof. Let x, y ∈ A, z, u ∈ B and s1, s2 > 0. By 80 we have

Fx,y(s1 + 2s2) ≥ T (Fx,z(s1 + s2), Fz,y(s2)) ≥

≥ T (T (Fx,u(s2), Fu,z(s1)), Fy,z(s2)) ≥ T (T (Fx,u(s2), DB(s1)), Fy,z(s2)) =

= T (DB(s1)), T (Fx,u(s2), Fy,z(s2))).

Simple calculations show

sup
y∈A

inf
x∈A

Fx,y(s1 + 2s2) ≥ T (DB(s1), T ( inf
x∈A

sup
u∈B

Fx,u(s2), inf
z∈B

sup
y∈A

Fy,z(s2))).
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If we take the supremum by s1 < t1 and s2 < t2 we obtain the required inequality. �

Proposition 2.1. If C is a nonempty collection of nonempty closed bounded

sets in a Menger space (X,F , T ) with T continuous, then (C, FC , T ) is also Menger

space, where FC is defined by FC(A,B) := FA,B for all A,B ∈ C .

Proof. See [3],[10]. �

Proposition 2.2. Let Tm(a, b) := max{a + b − 1, 0}. If (X,F , Tm) is a

complete Menger space and C is the collection of all nonempty closed bounded subsets

of X in (t, ε)− topology, then (C,FC , Tm) is also a complete Menger space.

Proof. Let (An)n∈N be a fundamental sequence in C and let

A = {x ∈ X : ∀n ∈ N,∃xn ∈ An,∀t > 0, lim
n→∞

Fxn,x(t) = 1}. (2)

Let A denote the closure of A. By [3, Theorem 15] we have FAn,A = FAn,A, so it is

enough to show that (i) limn→∞ FAn,A(t) = 1, for all t > 0, and (ii) A ∈ C.

(i) Let t > 0 and ε > 0 be given. Then there exists nε(t) ∈ N such that

n, m > nε implies FAn,Am( t
4 ) > 1− ε

4 . Let n > nε(t). We claim that FAn,A(t) ≥ 1− ε.

If x ∈ A, then there is a sequence (xk)k∈N with xk ∈ Ak and

limk→∞ Fxk,x( t
4 ) = 1. So, for large enough k > nε(t), we have Fxk,x( t

4 ) > 1 − ε
4 .

Since FAn,Ak
( t
4 ) > 1 − ε

4 , there exist y ∈ An such that Fxk,y( t
4 ) > 1 − ε

4 . By 80 we

have Fx,y( t
2 ) > 1− ε

4 , hence

sup
s<t

inf
x∈A

sup
y∈An

Fx,y(s) > 1− ε

2
. (3)

Now suppose that y ∈ An is arbitrary. Choose integers k1 < k2 < ... < ki < ... so

that k1 = n and

FAk,Aki
(

t

2i+2
) > 1− ε

2i+2
,

for all k > ki. We have infz∈Aki
supx∈Ak

Fx,z( t
2i+1 ) > 1− ε

2i+2 . Then define a sequence

(yk) with yk ∈ Ak as follows. For k < n, let yk ∈ Akbe arbitrarily and yn = y. If

yki
has been chosen and ki < k ≤ ki+1, take yk ∈ Ak with Fyki

,yk
( t
2i+2 ) > 1 − ε

2i+2 .

Then, for ki < k ≤ ki+1 < ... < kj < l ≤ kj+1, we have

Fyl,yk
(

t

2i
) ≥ Fyk,yki

(
t

2i+1
) + Fyki

,yki+1
(

t

2i+2
) + ... + Fykj−1 ,ykj

(
t

2j+1
)+

+Fykj
,yl

(
t

2j+1
)− (j − i + 1) > 1− ε

2i+1
.
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Let 0 < r, 0 < η < 1, and choose i so that t
2i < r and ε

2i+1 < η. We have

Fyk,yl
(r) ≥ Fyk,yl

(
t

2i
) > 1− ε

2i+1
> 1− η.

Hence (yk) is a fundamental sequence, so it converges. Let x be its limit. Therefore

x ∈ A, and we have

Fx,y(
t

2
) ≥ Fx,yk

(
t

4
) + Fyk,y(

t

4
)− 1.

Select k > n such that Fx,yk
( t
4 ) > 1 − ε

4 . Since Fy,yk
( t
4 ) > 1 − ε

4 , it follows that

Fx,y( t
2 ) > 1− ε

2 . Therefore we have

sup
s<t

inf
y∈An

sup
x∈A

Fx,y(s) > 1− ε

2
. (4)

By (3), the lather implies

FAn,A(t) = sup
s<t

Tm( inf
x∈A

sup
y∈An

Fx,y(s), inf
y∈An

sup
x∈A

Fx,y(s)) > 1− ε.

Thus limn→∞ FAn,A(t) = 1, for all t > 0,hence part (i) is proved..

(ii) Taking ε = 1 in the last argument, we have proved that A is nonempty.

Next we have to show that A is bounded. Since limn→∞ FAn,A(t) = 1,

for all ε > 0 and t0 > 0 there exists n0 ∈ N such that, for every n > n0, we have

infx∈A supw∈An
Fx,w(t0) > 1−ε and infy∈An

supx∈A Fx,y(t0) > 1−ε. The set An being

probabilistic bounded, for all ε > 0 there is tε > t0 such that infu,v∈An
Fu,v(tε) > 1−ε.

On the other hand, x, y ∈ A there exist u, v ∈ An such that

Fx,u(t0) > 1− ε, Fy,v(t0) > 1− ε.

We have

Fx,y(3tε) ≥ Tm(Fx,u(tε), Fu,y(2tε)) ≥ Tm(Fx,u(t0), Tm(Fu,v(tε), Fv,y(t0))) > 1− 3ε.

Therefore DA(3tε) ≥ 1−3ε, consequently we have supt∈R DA(t) = 1. By [3], it follows

that DA = DA, hence A ∈ C. �

3. Invariant sets in E-spaces

The notion of E-space was introduced by Sherwood [20] in 1969. Next we

recall this definition. Let (Ω,K, P ) be a probability space and let (M,d) be a metric

space. The ordered pair (E , F ) is an E-space over the metric space (M,d) (briefly,
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an E-space) if the elements of E are random variables from Ω into M and F is the

mapping from E × E into ∆+ defined via F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| d(x(ω), y(ω)) < t})

for every t ∈ R. Usually (Ω,K, P ) is called the base and (M,d) the target space of

the E-space. If F satisfies the condition

F(x, y) 6= H, for x 6= y,

with H defined in section 2, then (E ,F) is said to be a canonical E-space. H. Sherwood

[20] proved that every canonical E-space is a Menger space under T = Tm, where

Tm(a, b) = max{a + b − 1, 0}. In the following we suppose that E is a canonical

E-space.

The convergence in an E-space is exactly the probability convergence. The

E-space (E ,F) is said to be complete if the Menger space (E ,F , Tm) is complete.

Proposition 3.1. If (M,d) is a complete metric space then the E-space (E , F )

is also complete.

Proof. This property is well-known if M = R (see e.g. [21, Theorem

VII.4.2.]). In the general case the proof is analogous and we omit it. �

Proposition 3.2. If A is a nonempty probabilistic bounded subset of E and

f : E → E is a contraction with ratio r then f(A) is also probabilistic bounded, where

f(A) = {f(x) |x ∈ A}.

Proof. We have

Df(A)(t) = sup
s<t

inf
u,v∈f(A)

Fu,v(s) =

= sup
s<t

inf
x,y∈A

P ({ω ∈ Ω| d(f(x)(ω), f(y)(ω)) < s}) ≥

≥ sup
s<t

inf
x,y∈A

P ({ω ∈ Ω| d(x(ω), y(ω)) <
s

r
}) ≥

≥ sup
s<t

inf
x,y∈A

Fx,y(s) = DA(t).

Since supt>0 DA(t) = 1, it follows that supt>0 Df(A)(t) = 1. �

The main result of this paper is the following:
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Theorem 3.1. Let (E , F ) be a complete E- space, N ∈ N∗,, and let

f1, ..., fN : E → E be contractions with ratio r1, ...rN , respectively. Suppose that

there exists an element z ∈ E and a real number γ such that

P ({ω ∈ Ω|d(z(ω), fi(z(ω)) ≥ t}) ≤ γ

t
, (5)

for all i ∈ {1, .., N} and for all t > 0. Then there exists a unique nonempty closed

bounded subset K of E such that

f1(K) ∪ ... ∪ fN (K) = K.

Proof. Let Φ : 2E → 2E be defined by

Φ(A) := f1(A) ∪ f2(A) ∪ ... ∪ fN (A).

Let A0 = {z} and An = Φ(An−1) for n ≥ 1. Let r = max{r1, ..., rN}, J be the finite

alphabet {1, .., N}, and, for σ = σ1...σn ∈ Jn, set fσ = fσ1 ◦ fσ2 ◦ ... ◦ fσn
. We have:

An = ∪σ∈Jnfσ(A0).

First we show that (An)n∈N is a fundamental sequence in (C, FC ,Tm).

Since An+k = Φn(Ak) and An = Φn(A0), we have

inf
u∈An

sup
v∈Ak+n

Fu,v(s) = inf
u∈∪σ∈Jnfσ(A0)

sup
v∈∪σ∈Jn fσ(Ak)

Fu,v(s).

Observe, there exists σ′ ∈ Jn such that

inf
u∈An

sup
v∈Ak+n

Fu,v(s) = inf
u∈fσ′ (A0)

sup
v∈∪σ∈Jnfσ(Ak)

Fu,v(s) ≥

≥ inf
u∈fσ′ (A0)

sup
v∈fσ′Ak

Fu,v(s) = inf
x∈A0

sup
y∈Ak

Ffσ′ (x),fσ′ (y)(s) ≥

≥ sup
y∈Ak

P ({ω ∈ Ω| rnd(z(ω), y(ω)) < s}) =

= max
y∈∪

τ∈Jk fτ (A0)
P ({ω ∈ Ω| rnd(z(ω), y(ω)) < s}) ≥

≥ max
y∈∪

τ∈Jk fτ (A0)
P ({ω ∈ Ω| rnd(z(ω), y(ω)) < s · (1 +

√
r + · · ·+

√
r

k−1)(1−
√

r)}) ≥

≥ max
τ∈Jk

P ({ω ∈ Ω| rn[d(z(ω), fτ1(z(ω))) + d(fτ1(z(ω)), fτ1τ2(z(ω))) + · · ·

· · ·+ d(fτ1···τk−1(z(ω)), fτ1···τk
(z(ω)))] < s · (1 +

√
r + · · ·+

√
r

k−1)(1−
√

r)}) ≥
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≥ max
τ∈Jk

[P ({ω ∈ Ω| d(z(ω), fτ1(z(ω))) <
s(1−

√
r)

rn
})+

+P ({ω ∈ Ω| d(fτ1(z(ω)), fτ1τ2(z(ω))) <
s(1−

√
r)
√

r

rn
}) + · · ·

· · ·P ({ω ∈ Ω| d(fτ1...τk−1(z(ω)), fτ1...τk
(z(ω))) <

s(1−
√

r)
√

r
k−1

rn
})]− (k − 1) ≥

max
τ∈Jk

[P ({ω ∈ Ω| d(z(ω), fτ1(z(ω))) <
s(1−

√
r)

rn
})+

+P ({ω ∈ Ω| rd(z(ω)), fτ2(z(ω))) <
s(1−

√
r)
√

r

rn
}) + · · ·+

+P ({ω ∈ Ω| rk−1d(z(ω), fτm
(z(ω))) <

s(1−
√

r)
√

r
k−1

rn
})]− (k − 1) =

= 1− min
τ∈Jm

[P ({ω ∈ Ω| d(z(ω), fτ1(z(ω))) ≥ s(1−
√

r)
rn

})+

+P ({ω ∈ Ω| d(z(ω), fτ2(z(ω))) ≥ s(1−
√

r)
√

r

rn+1
}) + · · ·+

+P ({ω ∈ Ω| d(z(ω), fτk
(z(ω))) <

s(1−
√

r)
√

r
k−1

rn+k−1
})] ≥

≥ 1− γ · rn

(
1

s(1−
√

r)
+

r1/2

s(1−
√

r)
+ ... +

r(k−1)/2

s(1−
√

r)

)
>

> 1− γ
rn

s(1−
√

r)2
.

Since

lim
n→∞

(
1− γ

rn

s(1−
√

r)2

)
= 1,

we have, for t > 0,

lim
n→∞

FAn,Ak+n
(t) = 1,

uniformly with respect to k. The space (E , F ) being complete, (An) is convergent.

Let K be its limit.

Next we show that K is a fixed point of Φ. For i ∈ {1, ..., N}, x ∈ An−1, y ∈ K

and s > 0, we have

Ffi(x),fi(y)(s) ≥ Fx,y(s).

There exists i ∈ J such that

inf
u∈Φ(An−1)

sup
v∈Φ(K)

Fu,v(s) = inf
u∈fi(An−1)

sup
v∈Φ(K)

Fu,v(s) ≥

≥ inf
x∈An−1

sup
y∈K

Ffi(x),fi(y)(s) ≥ inf
x∈An−1

sup
y∈K

Fx,y(s).
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In a similar way

inf
v∈Φ(K)

sup
u∈Φ(An−1)

Fu,v(s) ≥ inf
y∈K

sup
x∈An−1

Fx,y(s).

Then it follows

FAn,Φ(K)(
t

2
) ≥ FAn−1,K(

t

2
) for all t > 0.

Using 80 one obtains

FK,Φ(K)(t) ≥ Tm(FK,An(
t

2
), FAn,Φ(K)(

t

2
)) ≥ Tm(FK,An(

t

2
), FAn−1,K(

t

2
)).

Since limn→∞ An = K, we have

FK,Φ(K)(t) = 1 for all t > 0,

therefore

K = Φ(K).

For the uniqueness we suppose that there exist closed and bounded K and

K ′ such that Φ(K) = K and Φ(K ′) = K ′. For x ∈ K, y ∈ K ′, σ ∈ Jn, and s > 0,

we have

Ffσ(x),fσ(y)(s) ≥ Fx,y(
s

rn
).

Let σ′ ∈ Jn be such that

inf
v∈∪σ∈Jn fσ(K′)

sup
u∈∪σ∈Jn fσ(K)

Fv,u(s) = inf
x∈f ′σ(K′)

sup
u∈∪σ∈Jn fσ(K)

Fv,u(s) ≥

≥ inf
v∈fσ′ (K

′)
sup

u∈fσ′ (K)

Fv,u(s) ≥ inf
y∈K′

sup
x∈K

Fx,y(
s

rn
).

Similarly,

inf
v∈∪σ∈Jn fσ(K′)

sup
u∈∪σ∈Jn fσ(K)

Fv,u(s) ≥ inf
x∈K

sup
y∈K′

Fx,y(
s

rn
).

Since K = Φn(K) = ∪σ∈Jnfσ(K), K ′ = Φn(K ′) = ∪σ∈Jnfσ(K ′), we have

FK,K′(t) ≥ FK,K′(
t

rn
) for all t > 0.

Using limn→∞ rn = 0, we have

FKK′(t) = 1 for all t > 0,

therefore K = K ′. �
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Corollary 3.1. Let (E , F ) be a complete E- space, and let f : E → E be a

contraction with ratio r. Suppose there exists z ∈ E and a real number γ such that

P ({ω ∈ Ω| d(z(ω), f(z)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

Remark: If the mean values
∫
Ω

d(z(ω), fi(x(ω)))dP for i ∈ {1, ..., N} are

finite, then by the Chebisev inequality, condition (5) is satisfied. However, the condi-

tion (5) can also be satisfied for
∫
Ω

d(z(ω), f(z(ω)))dP = ∞. For example, let Ω =]0, 1]

with the Lebesque measure and let f(x) = x(ω)
3 + 1

ω . Then for z(ω) ≡ 0, the above

expectation is ∞, but, for γ = 1, the condition (5) holds.

As in [6], the invariant set can be modeled by strings. Let N ≥ 1, and define

{1, ..., N}∗ = ∪k∈N{1, ..., N}k.

If τ ∈ {1, ..., N}∗, τ = τ1.τ2...τk, then | τ | = k is the length of τ. Set

fτ : E → E , fτ := fτ1 ◦ fτ2 ◦ ... ◦ fτk
. If A ⊂ E , we set Aτ1...τk

:= fτ (A) .

Let {1, ..., N}N carry the product of the discrete topology on {1, ..., N}. For

σ ∈ {1, ..., N}∗ ∪ {1, ..., N}N with k≤ | σ| let σ|k = σ1.σ2...σk be the restriction of σ

to its first k entries.

Let K be the invariant set from Theorem 3. As in [6], we can show that

a) Kσ1...σk
= ∪n

σk+1=1Kσ1...σkσk+1

b) K ⊃ Kσ1 ⊃ ... ⊃ Kσ1...σk
⊃ ....

Proposition 3.3. Let the hypotheses of Theorem 3 be satisfied. Then, for

all t > 0, we have

limk→∞Dfσ|k (K)(t) = 1.

Proof. Let An be the set defined in the proof of Theorem 3. If f is

an r-contraction, then Ff(An),f(K)(t) ≥ FAn,K(t) for t > 0. Let σ ∈ {1, ..., N}∗ ∪

{1, ..., N}N. Since limn→∞ FAn,K(t) = 1 for t > 0, it follows that

lim
n→∞

Ffσ|k(An),fσ|k(K)(t) = 1 (6)

uniformly with respect to k.
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We have

Dfσ|k(An)(t) = sup
s<t

inf
x,y∈fσ|k(An)

P ({ω ∈ Ω| d(x(ω), y(ω)) < s}) =

= sup
s<t

inf
u,v∈An

P ({ω ∈ Ω| d(fσ1...σk
(u)(ω), fσ1...σk

(v)(ω)) < s}) ≥

≥ sup
s<t

inf
u,v∈An

P ({ω ∈ Ω| rσ1 ...rσk
d(u(ω), v(ω)) < s}) ≥

≥ sup
s<t

inf
u,v∈An

P ({ω ∈ Ω| rkd(u(ω), v(ω)) < s}) ≥

≥ sup
s<t

inf
u,v∈An

[P ({ω ∈ Ω| d(u(ω), v(ω)) <
s

2r ∗ k
})+

+P ({ω ∈ Ω| d(z(ω), v(ω)) <
s

2rk
})]− 1 ≥

≥ 1− γ

(1−
√

r)2
· rn.

Hence

lim
k→∞

Dfσek(An)(t) = 1 for all t > 0 and n ∈ N.

By Lemma 2.2 we have

Dfσ|k(K)(t) ≥ Dfσ|k(An)(t) + Ffσ|k(An),fσ|k(K)(t)− 1.

Using (6) it follows the assertion. �

Proposition 3.4. For all σ ∈ {1, ..., N}N there exists a unique element

xσ ∈ ∩n∈NKσ1...σn

Proof. For every n ∈ N we choose an element xn ∈ Kσ1...σn . Let m < n,

then xm, xn ∈ Kσ1...σm
. Since

limk→∞Dfσ|k(K)(t) = 1 for t > 0, and ε > 0,

there exists m0 ∈ N such that, for all m > m0,

inf
x,y∈Kσ1...σm

P{ω ∈ Ω|d(x(ω), y(ω)) < t} > 1− ε.

It follows, for m,n > m0, P ({ω ∈ Ω|d(xn(ω), xm(ω)) < t}) > 1−ε, therefore (xn)n∈N

is a Cauchy sequence. Since the space (E ,F) is complete, it follows the convergence

of (xn)n∈N . Let xσ be its limit. Then xσ ∈ ∩n∈NKσ1...σn
.

Since limn→∞ DKσ1...σn
(t) = 1 for all t > 0, it follows that xσ is the unique

element of the intersection. �
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Proposition 3.5. The map π : {1, ..., N}N → K given by π(σ) = xσ is a

continuous map onto K.

Proof. Let σ = σ1...σn... ∈ {1, ..., N}N and let ε > 0. Since π(σ) = xσ ∈

∩n∈NKσ1...σn
and limn→∞ DKσ1...σn

(t) = 1 for all t > 0, there exists n0 ∈ N such

that

DKσ1...σn
(t) > 1− ε for all n > n0.

For y ∈ Kσ1...σn we have

P ({ω ∈ Ω| d(y, π(σ)) < t}) > 1− ε,

hence Kσ1...σn ⊂ Uπ(σ)(t, ε) for n > n0. Since Kσ1...σn contains the image of the open

set {β|βi = σi, if i ≤ n}, it follows π is continuous.

Let K ′ = π({1, ..., N}N). Observe K ′ ⊂ K and K ′ is a compact set. We show

that K ′ is an invariant set. If y ∈ K ′, then there exists σ ∈ {1, ..., N}N such that

y = π(σ) ∈ fσ1(K
′). So K ′ ⊂ ∪l

i=1fi(K ′).

If y ∈ ∪l
i=1fi(K ′) then there exists j ∈ {1, ..., l} such that y ∈ fj(K ′), hence,

for any σ′ ∈ {1, ..., N}N, y = fj(π(σ′)) = π(jσ′) ∈ K ′.

Since the closed bounded invariant set is unique, it follows K = K ′. �

Corollary 3.2. The invariant set in Theorem 3 is compact.

4. Self similar fractal sets

Recently Hutchinson and Rüschendorf [9] gave a simple proof for the ex-

istence and uniqueness of invariant random sets using the L∞-metric. The under-

lying probability space for the iteration procedure is generated by selecting inde-

pendent and identically distributed scaling laws. A scaling law S is an N-tuple

(S1, ...., SN ), N ≥ 2, of Lipschitz maps Si : Rn → Rn. Let ri = LipSi. A ran-

dom scaling law S = (S1, S2, ..., SN ) is a random variable whose values are scaling

laws. We write S = distS for the probability distribution determined by S and d= for

the equality in distribution.

If K is a random set, then the random set SK is defined (up to probability

distribution) by

SK = ∪iSiK
(i),
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where S,K(1), ...,K(N) are independent of one another and K(i) d= K.

We say K satisfies the scaling law S, or is a self-similar random fractal set,

if

SK
d= K, or equivalently SK = K.

Let C be the set of random compact sets K such that

ess sup
ω

dH(Kω, δω
B) < ∞, (7)

for some, and hence any, fixed compact set B ⊂ Rn, where dH is the hausdorff metric.

By δB we mean the random set equal a.s. to B. In [9], Hutchinson and Rüschendorf

generate random sets in the following manner:

Beginning with a nonrandom set K0 one defines a sequence of random sets

SK0 = ∪iSiK0,

S2K0 = ∪i,jSi ◦ Si
jK0,

S3K0 = ∪i,j,kSi ◦ Si
j ◦ Sij

k K0,

etc.: where Si = (Si
1, S

i
2, ..., S

i
N ), for i ∈ {1, ..., N}, are independent of each other and

of S, the Sij = (Sij
1 , Sij

2 , ..., Sij
N ), for i, j ∈ {1, ..., N} are independent of each other

and of S and Si, etc.

A construction tree ( or a construction process ) is a map ω : {1, ..., N}∗ → Γ,

where Γ is the set of (nonrandom) scaling laws. The sample space of all construction

trees is denoted by Ω̃. The underlying probability space (Ω̃, K̃, P̃ ) for the iteration

procedure is generated by selecting identical distributed and independent scaling laws

ω(σ) d= S for each σ ∈ {1, ..., N}∗ (see [9]). It is well known the following result:

Theorem 4.1. ([4],[5],[9]) If S = (S1, S2, ..., SN ) is a random scaling law

with

λ := ess sup
ω

rω < 1 (8)

(where rω = maxi LipSω
i ), then for any (nonrandom) compact set K0,

ess sup
ω

dH(SK0,K
∗) ≤ λk

1− λ
ess sup

ω
dH(K0,SK0) → 0

as k →∞, where K∗ does not depend on K0. In particular, SkK0 → K∗ a.s.

Moreover, up to probability distribution, K∗ is the unique random compact

set which satisfies S.
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However, using contraction method in probabilistic metric spaces,instead of

(6) we can give weaker conditions for the existence and uniqueness of invariant sets.

Theorem 4.2. Let E be the set of nonempty random compact sets A ⊂ Rn,

and let S be a random scaling law with λ = ess supω rω < 1. Suppose there exists

Z ∈ E and a positive number γ such that

P ({ω ∈ Ω| dH(Z(ω),S(Z(ω))) ≥ t}) ≤ γ

t
for all t > 0. (9)

Then there exists K∗ ∈ E such that S(K∗) = K∗.

Moreover, K∗ is unique up to probability distribution.

Proof. Define f : E → E , f(A) = SA. For A,B ∈ E , Ai d= A,Bi d= B, i ∈

{1, ..., N}, one checks that

Ff(A),f(B)(t) = P ({ω ∈ Ω| dH(f(A), f(B)) < t}) =

= P ({ω ∈ Ω| dH(∪N
i=1Si(ω)(Ai(ω)),∪N

i=1Si(ω)(Bi(ω))) < t}) ≥

≥ P ({ω ∈ Ω| λ ·max
i
·dH(Ai(ω)), Bi(ω)) < t}) =

= P ({ω ∈ Ω| λ · dH(A(ω), B(ω)) < t}) = FA,B(
t

λ
) for all t > 0.

It follows that f is a contraction with ratio λ and we can apply the Corollary 3.1 for

r = λ. For the uniqueness, let C the set of probability distribution of members of C,

i.e.

C = {distA|A ∈ C}.

We define on C the probability metric by

FA,B(t) = sup
s<t

sup{FA,B(s)|A d= A, B
d= B}.

It is easy to verify that S is a contraction map:

FSA,SB(t) ≥ FA,B(
t

λ
) for all t > 0.

Let K∗ and K∗∗ such that

SK∗ = K∗ and SK∗∗ = K∗∗.

As in the proof of the Theorem 3, one can show that

FK∗,K∗∗(t) = 1 for all t > 0. �

Remark. If condition (6) is satisfied, then (9) holds.
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