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NORM ESTIMATES, COEFFICIENT ESTIMATES AND SOME
PROPERTIES OF SPIRAL-LIKE FUNCTIONS
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Abstract. This is a survey of the author’s talk at the VIIIth Romanian-

Finnish Seminar in Iassy, Romania, in 23-27 August 1999. We shall state

the sharp estimates of the norms of pre-Schwarzian and Schwarzian deriva-

tives of spiral-like functions and about the optimal growth estimates of

coefficients of them. We shall also remark that some spiral-like function

f(z) = z + a2z
2 + · · · is normalized and univalent on the unit disk D but

satisfies a2f(z) + 1 = 0 for some z ∈ D.

1. Introduction

We consider an analytic function f on the unit disk D normalized so that

f(0) = f ′(0) − 1 = 0. For a constant β ∈ (−π/2, π/2), such a function f is called

β-spiral-like if f is univalent on D and for any z ∈ D, the β-logarithmic spiral

{f(z) exp(−eiβt); t ≥ 0} is contained in f(D). It is equivalent to the analytic condi-

tion that <(e−iβzf ′(z)/f(z)) > 0 in D. We denote by SP (β) the set of β-spiral-like

functions. We call fβ(z) := z(1 − z)−2eiβ cos β ∈ SP (β) the β-spiral Koebe function.

Note that SP (0) is the set of starlike functions and that f0(z) = z(1− z)−2 is the

Koebe function. The β-spiral Koebe function conformally maps the unit disk onto

the complement of the β-logarithmic spiral {fβ(−e−2iβ) exp(−eiβt); t ≤ 0} in C. For

the known results about these classes of the functions, see, for example, [1].
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2. Norm estimates

For a locally univalent holomorphic function f , we define

Tf =
f ′′

f ′
and Sf = (Tf )′ − 1

2
(Tf )2,

which are said to be the pre-Schwarzian derivative (or nonlinearity) and the

Schwarzian derivative of f , respectively. For a locally univalent function f in D,

we define the norms of Tf and Sf by

‖Tf‖1 = sup
z∈D

(1− |z|2)|Tf (z)| and ‖Sf‖2 = sup
z∈D

(1− |z|2)2|Sf (z)|,

respectively.

As well as ‖Sf‖2, the norm ‖Tf‖1 has a significant meaning in the theory of

Teichmüller spaces. For example, see [8], [2] and [13].

We shall give the best possible estimate of the norms of pre-Schwarzian deriva-

tives for the class SP (β).

Main Theorem 1 ([9]). For any f ∈ SP (β), where β ∈ (−π/2, π/2), we

have the following.

I) In the case |β| ≤ π/3, we have

‖Tf‖1 ≤ ‖Tfβ
‖1 = 2|2 + e2iβ |. (1)

II) In the case |β| > π/3, we have ‖Tf‖1 ≤ ‖Tfβ
‖1, where

‖Tfβ
‖1 = max

0≤m≤ 4
3 sin |β|

2m cos β

(
1 +

√
m2 + 4− 4m sin |β|
m2 + 1− 2m sin |β|

)
and (2)

2|2 + e2iβ | < ‖Tfβ
‖1 < 2

(
1 +

4
3

sin 2|β|
)

. (3)

In particular, ‖Tfβ
‖1 → 2 as |β| → π/2.

In both cases, the equality ‖Tf‖1 = ‖Tfβ
‖1 holds if and only if f is a rotation of the

β-spiral Koebe function, i.e., f(z) = (1/ε)fβ(εz) for some |ε| = 1.

The proof of Main Theorem 1 is in [9]. From the proof, if |β| ≤ π/3, the

function (1− |z|2)|Tfβ
(z)| does not attain its supremum in D. However if |β| > π/3,

it does since

max
∂D3z0

lim sup
D3z→z0

(1− |z|2)|Tfβ
(z)| = 2|2 + e2iβ | < ‖Tfβ

‖1.
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This phenomenon of phase transition seems to be quite interesting.

Remark. Clearly, the β-spiral Koebe function fβ converges to idD (which

is bounded) locally uniformly on D as |β| → π/2 but does not converge to it with

respect to the norm ‖ ·‖1 since lim|β|→π/2 ‖Tfβ
‖1 = 2. On the other hand, it is known

that a normalized analytic function f is bounded if ‖Tf‖1 < 2. In fact, the value 2 is

the least one of the norms of unbounded normalized analytic functions.

We would also like to mention the related works about norm estimates of

pre-Schwarzian derivatives in other classes by Shinji Yamashita [11] and Toshiyuki

Sugawa [10].

Theorem 2.1. Let 0 ≤ α < 1 and f be a normalized analytic function.

If f is starlike of order α, i.e., <(zf ′(z)/f(z)) > α, then ‖Tf‖1 ≤ 6− 4α.

If f is convex of order α, i.e., <(1+zf ′′(z)/f ′(z)) > α, then ‖Tf‖1 ≤ 4(1−α).

If f is strongly starlike of order α, i.e., arg(zf ′(z)/f(z)) < πα/2, then

‖Tf‖1 ≤ M(α)+2α, where M(α) is a specified constant depending only on α satisfying

2α < M(α) < 2α(1 + α).

All of the bounds are sharp.

On the other hand, we also obtain the estimate of the norms of Schwarzian

derivatives of β-spiral-like functions.

Main Theorem 2 ([9]). Assume |β| < π/2. For any f ∈ SP (β), ‖Sf‖2 ≤

‖Sfβ
‖2 = 6.

In the rest of this article, we shall state two remarks about spiral-like func-

tions.

3. Order estimates of the coefficients

Knowing the norm ‖Tf‖1 enables us to estimate the growth of coefficients of

f . For example, the following holds.

Theorem 3.1 (cf.[7]). Let (3/2) < λ ≤ 3. For a normalized analytic function

f(z) = z + a2z
2 + a3z

3 + · · · such that ‖Tf‖1 ≤ 2λ, it holds that an = O(nλ−2) as

n → +∞. This order estimate is best possible.
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However the sharp estimate of coefficients of f ∈ SP (β) has been already

obtained by Zamorski [12] in 1960. We would like to remark that we can derive the

sharp growth estimate of coefficients of f ∈ SP (β) from this.

Theorem 3.2 (Zamorski). If f(z) = z + a2z
2 + a3z

3 + · · · is in SP (β) and

|β| < π/2, then

|an| ≤
n−1∏
k=1

∣∣∣∣1 +
e2iβ

k

∣∣∣∣ (4)

for n ≥ 2. The equality in (4) holds for some n ≥ 2 if and only if f is a rotation of

the β-spiral Koebe function fβ.

Remark. This is also shown in terms of generalized spiral-like functions by

C. Burniak, J. Stankiewicz and Z. Stankiewicz [4](1980).

Corollary 3.1. Let |β| < π/2 and f(z) = z +a2z
2 +a3z

3 + · · · be a β-spiral-

like function. Then it holds that

an = O(ncos 2β) (n → +∞). (5)

This order estimate is sharp.

Remark. In the case |β| < π/4, this is shown by Basgöze and Keogh in

[3](1970).

4. Strongly normalized univalent functions are not always holomorphic.

The following is known.

Theorem 4.1. For a holomorphic function φ on a simply connected domain

A, there exists a locally univalent meromorphic function f on A such that

Sf = φ.

The solution is unique up to postcomposition of an arbitrary Möbius transformation.

We assume A = D. Nehari showed that if ‖φ‖2 = supz∈D |φ(z)|(1−|z|2)2 ≤ 2,

then f is univalent and meromorphic on D. It is well-known that if f is strongly

normalized, i.e., f(0) = f ′(0)− 1 = f ′′(0) = 0, then f is holomorphic on D. Since for

a normalized analytic function f(z) = z + a2z
2 + · · · , g := f/(a2f + 1) is strongly

normalized and ‖Sf‖2 = ‖Sg‖2, we have the following.
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Proposition 4.1 ([6], [5] Corollary 2). If a normalized analytic function

f(z) = z + a2z
2 + · · · satisfies ‖Sf‖2 ≤ 2, then f is univalent and a2f + 1 6= 0 on D.

In [5] Chuaqui and Osgood remark that a strongly normalized univalent func-

tion f is not always holomorphic if ‖Sf‖2 > 2. Spiral-like functions are examples for

this fact.

Theorem 4.2. If |β| is sufficiently close to π/2, the β-spiral-Koebe function

fβ(z) = z + a2z
2 + · · · satisfies a2fβ(z) + 1 = 0 for some z ∈ D.
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