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ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX
ORDER
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Dedicated to Professor Petru T. Mocanu on his 70" birthday

Abstract. We introduce a class, namely, Hy,(b, M) of certain analytic
functions. For this class we determine sufficient condition in terms of
coefficients, coefficient estimate, maximization theorem concerning the co-

efficients, and radius problem.

1. Introduction

Let A denote the class of functions of the form
f(2) :z—f—Zakzk (1.1)
k=2

which are analytic and univalent in the unit disc U = {z : |z| < 1}. We use Q
to denote the class of functions w(z) in U satisfying the conditions w(0) = 0 and

|w(z)| < 1 for z € U. For a function f(z) in A, we define

D°f(z) = f(2), (12)
D'f(z) = Df(2) = zf'(2), (1.3)

and
D"f(z) = D(D" ' f(2)) (ne€N={1,2,...,}). (1.4)

The differential operator D™ was introduced by Salagean [11]. With the help

of the differential operator D", we say that a function f(z) belonging to A is in the
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class F,, (b, M) if and only if
n+1
b—1+ m

bD”f(Z) _M|<M, :evU (1.5)

1
where M > 3 and b # 0, complex.
It follows by Kulshrestha [6] that g(z) € Hy (1, M) = F(1, M) if and only if
for z € U

2g'(2) _ 1+ w(z)
g(2) 1 —mw(z)’

(1.6)

1 1
wheremflfﬁ <M> 2) and w(z) € Q.

One can easily show that f(z) € H,(b, M) if and only if there is a function
g(z) € Hyo(1, M) = F(1, M) such that

D"f(z) =2 [g(z)r. (1.7)

z

Thus from (1.6) and (1.7) it follows that f(z) € H, (b, M) if and only if for

zeU

D" f(2) 14 [b(1+m) — mlw(z)
Dnf(z) 1 —mw(z) ’ (18)

where m =1 — % (M > ;) and w(z) € Q.

By giving specific values to n,b and M, we obtain the following important
subclasses studied by various authors in earlier works:

(1) Ho(b,M) = F(b, M) (Nasr and Aouf [7]) and H; (b, M) = G(b, M) (Nasr
and Aouf [8]).

(2) Hp(cosde ™™ M) = F\u and Hi(coshe ™ M) = Gam (|)\\ < g)
(Kulshrestha [4]).

(3) Ho((1—a)cos Ae™™* 00) = S*(a) (|)\| < g, 0<ax< 1) (Libera [6]) and
Hy((1—a)cos Ae™ 00) = CMa) (\)\| < g, 0<ax< 1) (Chichra [3] and Sizuk [14]).

(4) Ho(b,M) = S(1 —b) (Nasr and Aouf [9]) and H;(b, M) = C(b) (Wia-
trowski [15] and Nasr and Aouf [10]).

(5) Ho((1 — a)cosAe™™ M) = Fy(\,a) and Hy((1 — a)cos e ™ M) =
G\ a) (m < g 0<a< 1) (Aouf [1,2)).
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(6) Ho(1,1) = F'(1,1) Singh [12] and Hy(1, M) = F(1, M) (Singh and Singh

From the definitions of the classes F(b, M) and H, (b, M), we observe that
f(z) € Hy(b, M) if and only if D" f(z) € F(b, M). (1.9)

The purpose of the present paper is to determine sufficient condition in terms
of coefficients for function belong to H,, (b, M), coefficient estimate, and maximization
of |lag — pa3| on the class H, (b, M) for complex value of p. Further we obtain the

. L . D"FLf(2)
radius of disc in which Re D) > 0, wherever f(z) belongs to H, (b, M).
z

2. A sufficient condition for a function to be in H, (b, M)

Theorem 1. Let the function f(z) defined by (1.1) and let

D Atk = 1) +[b(L +m) + m(k = D[}k"ax| < [b(1+m)|, (2.1)
k=2
1 1
holds, then f(z) belongs to H,(b, M), where m =1 — i M > 3
Proof. Suppose that the inequality (2.1) holds. Then we have for z € U

D™ f(2) = D" £(2)] = [b(1 +m)D" f(2) + m(D" ! f(2) — D" f(2))]

—|b(1+m) {Z+Zk”akz }erZk”(kl)akzk
k=2

k— 1)akzk <

<> EM(k = 1)]aglrt - {|b(1 +m)|r — Z |b(1 +m) + m(k — 1)k"akrk} -
k=2 k=2

o0

= {(k— 1)+ [b(1 +m) + m(k — 1)|}&"|ag|r* — [b(1 + m)|r.
k=2
Letting » — 71, then we have

D" f(2) = D" f(2)] = b(1 +m)D" f(2) + m(D" " f(2) — D" f(2))| =

=S (= 1)+ 1601 ) -+l — DI ax] = 61+ m)] <0, by (2.1)
IIC-I:eznce it follows that
D)
b1 + | < *e
w e { gt 1)
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Letting .
D f(z)

n+1 2 ’

s s gt 1}

then w(0) = 0, w(z) is analytic in |z] < 1 and |w(z)| < 1. Hence we have

-1

w(z) =

DY) L b1+ m) — mluz)
D7 f(2) 1—mw(z)

which shows that f(z) belongs to H,,(b, M).

3. Coefficient estimate

Theorem 2. Let the function f(z) defined by (1.1) be in the class
H,(b, M), 2 € U.
(a) If 2m(k — 1)Re {b} > (k — 1)%(1 —m) — [b|*(1 + m), let

2m(k — 1)Re {b}

N= (k—1)2(1 —m) — [b]2(1 +m)

], k=23,...,j—1.

|aj|< 'H|b1—|—m (k —2)ml, (3.1)

forj=23,...,N+2; and

1 N+3
i 1)(N+1) [T +m)+E-2)ml, j>N+2. (32
T k=2

(b) If 2m(k — 1)Re {b} < (k — 1)2(1 —m) — |[b]*>(1 +m), then

(1 +m)[b]

Igl_jn(j_),fo rjz2 (3.3)

M 2
The inequalities (3.1) and (3.3) are sharp.

Proof. Since f(z) € H, (b, M), so from (1.8) we have that

1 1
where m =1— — (M > ) and b # 0, complez.

Z k" (k —1)apz" = {b(l +m)z + i E"[b(1+m)+m(k — 1)]akzk} w(z) (3.4)

k=2
which is equivalent to
J 00
Z E"(k — 1Dagz" + Z dpz* =
k=2 k=2
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j—1

= {b(l +m)z+ Z EMb(1+m)+m(k — 1)]} arz"w(z),
k=2

where d;’s are some complex numbers.

Then since |w(z)| < 1, we have

J 00
Z E"(k — 1Dagz" + Z dpz*| <
k=2

j=k+1
< b1 +m)z+§k"[b(1 +m) +m(k — 1)]ap2" (3.5)
k=2

Squaring both sides of (3.5) and integrating round |z| = r < 1, we get, after

taking the limit when r — 1

72 = 1)?[ag]? < (1 +m)?[b]*+
j—1
+ Kb+ m) +m(k — 1)]* = (k= 1)*}Hag|*. (3.6)
k=2
Now there may be following two cases:

(a) Let 2m(k — 1)Re {b} > (k — 1)2(1 — m) — (1 + m)|b|>. Suppose that
j < N+ 2; then for j = 2, (3.7) gives

(1 +m)|b|

lag| < on

which gives (3.1) for j = 2. We establish (3.1), by mathematical induction. Suppose
(3.1) is valid for k = 2,3,...,5 — 1. Then it follows from (3.6)

727G = 1?[ag* < (1+m)? b+
j—1

+Zk2"{|b<1+m>+m<k—1>|2—(k—l)}kzn - 2H|b1+m (p—2)m|* =
k=2

2H|b1+m (k —2)ml|?.
Thus, we get
|aj|< 'H|b1—|—m (k —2)m),

which completes the proof of (3.1).
Next, we suppose j > N + 2. Then (3.6) gives
(G = 1)%lag* < (14 m)?[bf*+
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N+1
+ b1+ m) +m(k — 1) = (k — 1)*}ax[*+
k=2
j—1
+ Y Kb+ m) +mk— 1) = (k= 1)"}Hax|* <
k=N+3
N+2
< (L+m)2p + > {b(A +m) +mk — 1> = (k — 1)*}Hax|*.
k=2
On substituting upper estimates for as,as,...,an42 obtained above, and

simplifying, we obtain (3.2).
(b) Let 2m(k —1)Re {b} < (k—1)%(1—m) — (1+m)|b|?, then it follows from
(2.7)
PG =l < A+m) (5= 2)

which proves (3.3).
The bounds in (3.1) are sharp for the function f(z) given by

z
b(1+m) ? # 07
Drf(z) = (1—mz)™ " (3.7)

zexp(bz), m = 0.

The bounds in (3.3) are sharp for the function f(z) given by

, M 7é 07
D" fi(z) = (3.8)
b _
zexp(k_lzk 1), m=20

. . . 2
4. Maximization of |az — paj]

We shall need in our discussion the following lemma:

oo
Lemma 1. [5] Let w(z) = Z cpzt € Q, if pis any complex number, then
k=1

lea — pc3] < max{L, ]} (4.1)

for any complex . Equality in (4.1) may be attained with the functions w(z) = 22

and w(z) = z for |p| <1 and |p] > 1, respectively.
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Theorem 3. If a function f(z) defined by (1.1) is in the class H, (b, M) and

1 is any complex number, then

1
jay — ] < PO ey, . (42)
where
2-3"ub(1+m)
d:T—[b(1+m)+m]. (4.3)
The result is sharp.
Proof. Since f(z) € H,(b,m), we have
U)(Z) _ D”‘Hf(z) _an(z> _
(1 +m) —m]D"f(z) + mDntf(z)
Zk"(k — Dagz"1
b(L+m)+ D> pey km[b(1+m) + m(k — 1)]agzk1
oo oo —1
Z E"(k —1)apz""1 Z E"b(1 4 m) + m(k — 1)]agz""1
k=2 k=2
1 4.4
b(1 + m) * b(1 + m) (44)
Now compare the coefficients of z and z? on both sides of (4.4). We thus
obtain
b(1
ag = (;m)ch (4.5)
2’IL
and
b(1
a3 = (2;3;”){@2 + [b(1 4+ m) +m]e3). (4.6)
Hence
b(1
as — a3 = 0 o, a3, (@)
where

g 2:3"ub(1+ m)

52n [b(1 +m) + m)].

Taking modulus both sides in (4.7), we have

[b(1 +m)|

2
— <
las — paz| < =57

lco — dc?|. (4.8)

Using Lemma 1 in (4.8), we have

[b(1 + m)|

2
a0 — <
las — pa3| < =52

max{1,]|d|}.
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Finally, the assertion (4.2) of Theorem 3 is sharp in view of the fact that the

assertion (4.1) of Lemma 1 is sharp.

5. Radius Theorem

The following theorem may be obtained with the help of (1.9) and Theo-
rem 3 of Nasr and Aouf [7].
Theorem 4. Let the function f(z) defined by (1.1) be in the class H, (b, M).

Then
Dt f(z)
Re {W} >0 fO’f' |Z‘ < Tn,
where
1yl

Ty =2 {|b|(1 +m) + [|b|2(1 +m)? -4 {Re (b) (1;’”> - 1} — 1} } (5.1)

such that
9 9 14+m
[b]*(1 +m)* > 4{Re (b) (m) - 1} .
The result is sharp for the function fo(t), where
D" fo(z) = 2(1 — mz) (") (5.2)

and

Remarks on Theorem 4.

(i) Putting n = 0, we get the sharp radius of starlikeness of the class F(b, M)
studied by Nasr and Aouf [7].

(i) Putting n = 1, we get the sharp radius of convexity of the class G(b, M)
which is investigated by Nasr and Aouf [8].
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