ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER

M. K. AOUF, H. E. DARWISH AND A. A. ATTIYA

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. We introduce a class, namely, $H_n(b, M)$ of certain analytic functions. For this class we determine sufficient condition in terms of coefficients, coefficient estimate, maximization theorem concerning the coefficients, and radius problem.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic and univalent in the unit disc $U = \{z : |z| < 1\}$. We use Ω to denote the class of functions w(z) in U satisfying the conditions w(0) = 0 and |w(z)| < 1 for $z \in U$. For a function f(z) in A, we define

$$D^0 f(z) = f(z), \tag{1.2}$$

$$D^1 f(z) = Df(z) = zf'(z),$$
 (1.3)

and

$$D^{n} f(z) = D(D^{n-1} f(z)) \quad (n \in N = \{1, 2, \dots, \}).$$
(1.4)

The differential operator D^n was introduced by Salagean [11]. With the help of the differential operator D^n , we say that a function f(z) belonging to A is in the

¹⁹⁹¹ Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, Salagean operator, complex order.

class $F_n(b, M)$ if and only if

$$\left| \frac{b - 1 + \frac{D^{n+1}f(z)}{D^n f(z)}}{b} - M \right| < M, \quad z \in U,$$
 (1.5)

where $M > \frac{1}{2}$ and $b \neq 0$, complex.

It follows by Kulshrestha [6] that $g(z) \in H_0$ (1, M) = F(1, M) if and only if for $z \in U$

$$\frac{zg'(z)}{g(z)} = \frac{1 + w(z)}{1 - mw(z)},\tag{1.6}$$

where $m = 1 - \frac{1}{M} \left(M > \frac{1}{2} \right)$ and $w(z) \in \Omega$.

One can easily show that $f(z) \in H_n(b, M)$ if and only if there is a function $g(z) \in H_0(1, M) = F(1, M)$ such that

$$D^{n}f(z) = z \left[\frac{g(z)}{z} \right]^{b}. \tag{1.7}$$

Thus from (1.6) and (1.7) it follows that $f(z) \in H_n(b,M)$ if and only if for $z \in U$

$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{1 + [b(1+m) - m]w(z)}{1 - mw(z)},\tag{1.8}$$

where $m = 1 - \frac{1}{M} \left(M > \frac{1}{2} \right)$ and $w(z) \in \Omega$.

By giving specific values to n, b and M, we obtain the following important subclasses studied by various authors in earlier works:

- (1) $H_0(b, M) = F(b, M)$ (Nasr and Aouf [7]) and $H_1(b, M) = G(b, M)$ (Nasr and Aouf [8]).
- (2) $H_0(\cos \lambda e^{-i\lambda}, M) = F_{\lambda,M}$ and $H_1(\cos \lambda e^{-i\lambda}, M) = G_{\lambda,M}$ $\left(|\lambda| < \frac{\pi}{2}\right)$ (Kulshrestha [4]).
- $(3) \ H_0((1-\alpha)\cos\lambda e^{-i\lambda},\infty) = S^\lambda(\alpha) \ \left(|\lambda|<\frac{\pi}{2},\ 0\leq\alpha<1\right) \ \text{(Libera [6]) and} \\ H_1((1-\alpha)\cos\lambda e^{-i\lambda},\infty) = C^\lambda(\alpha) \ \left(|\lambda|<\frac{\pi}{2},\ 0\leq\alpha<1\right) \ \text{(Chichra [3] and Sizuk [14])}.$
- (4) $H_0(b, M) = S(1 b)$ (Nasr and Aouf [9]) and $H_1(b, M) = C(b)$ (Wiatrowski [15] and Nasr and Aouf [10]).
- (5) $H_0((1-\alpha)\cos\lambda e^{-i\lambda}, M) = F_M(\lambda, \alpha)$ and $H_1((1-\alpha)\cos\lambda e^{-i\lambda}, M) = G_M(\lambda, \alpha) \left(|\lambda| < \frac{\pi}{2}, \ 0 \le \alpha < 1\right)$ (Aouf [1,2]).

(6) $H_0(1,1) = F(1,1)$ Singh [12] and $H_0(1,M) = F(1,M)$ (Singh and Singh [13]).

From the definitions of the classes F(b, M) and $H_n(b, M)$, we observe that

$$f(z) \in H_n(b, M)$$
 if and only if $D^n f(z) \in F(b, M)$. (1.9)

The purpose of the present paper is to determine sufficient condition in terms of coefficients for function belong to $H_n(b,M)$, coefficient estimate, and maximization of $|a_3 - \mu a_2^2|$ on the class $H_n(b,M)$ for complex value of μ . Further we obtain the radius of disc in which Re $\left\{\frac{D^{n+1}f(z)}{D^nf(z)}\right\} > 0$, wherever f(z) belongs to $H_n(b,M)$.

2. A sufficient condition for a function to be in $H_n(b, M)$

Theorem 1. Let the function f(z) defined by (1.1) and let

$$\sum_{k=2}^{\infty} \{ (k-1) + |b(1+m) + m(k-1)| \} k^n |a_k| \le |b(1+m)|, \tag{2.1}$$

holds, then f(z) belongs to $H_n(b, M)$, where $m = 1 - \frac{1}{M} \left(M > \frac{1}{2} \right)$.

Proof. Suppose that the inequality (2.1) holds. Then we have for $z \in U$

$$\begin{split} &|D^{n+1}f(z)-D^nf(z)|-|b(1+m)D^nf(z)+m(D^{n+1}f(z)-D^nf(z))|\\ &=\left|\sum_{k=2}^{\infty}k^n(k-1)a_kz^k\right|-\left|b(1+m)\left\{z+\sum_{k=2}^{\infty}k^na_kz^k\right\}+m\sum_{k=2}^{\infty}k^n(k-1)a_kz^k\right|\leq\\ &\leq\sum_{k=2}^{\infty}k^n(k-1)|a_k|r^k-\left\{|b(1+m)|r-\sum_{k=2}^{\infty}|b(1+m)+m(k-1)|k^n|a_k|r^k\right\}=\\ &=\sum_{k=2}^{\infty}\{(k-1)+|b(1+m)+m(k-1)|\}k^n|a_k|r^k-|b(1+m)|r. \end{split}$$

Letting $r \to -1$, then we have

$$|D^{n+1}f(z) - D^n f(z)| - |b(1+m)D^n f(z) + m(D^{n+1}f(z) - D^n f(z))| =$$

$$= \sum_{k=2}^{\infty} \{(k-1) + |b(1+m) + m(k-1)|\} k^n |a_k| - |b(1+m)| \le 0, \text{ by } (2.1).$$

Hence it follows that

$$\left| \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{b(1+m) + m \left\{ \frac{D^{n+1}f(z)}{D^n f(z)} - 1 \right\}} \right| < 1, \quad z \in U.$$

Letting

$$w(z) = \frac{\frac{D^{n+1}f(z)}{D^nf(z)} - 1}{b(1+m) + m\left\{\frac{D^{n+1}f(z)}{D^nf(z)} - 1\right\}},$$

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence we have

$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{1 + [b(1+m) - m]w(z)}{1 - mw(z)}$$

which shows that f(z) belongs to $H_n(b, M)$.

3. Coefficient estimate

Theorem 2. Let the function f(z) defined by (1.1) be in the class $H_n(b,M), z \in U$.

(a) If
$$2m(k-1)\text{Re }\{b\} > (k-1)^2(1-m) - |b|^2(1+m)$$
, let
$$N = \left\lceil \frac{2m(k-1)\text{Re }\{b\}}{(k-1)^2(1-m) - |b|^2(1+m)} \right\rceil, \quad k = 2, 3, \dots, j-1.$$

Then

$$|a_j| \le \frac{1}{j^n(j-1)!} \prod_{k=2}^j |b(1+m) + (k-2)m|,$$
 (3.1)

for j = 2, 3, ..., N + 2; and

$$|a_j| \le \frac{1}{j^n(j-1)(N+1)!} \prod_{k=2}^{N+3} |b(1+m) + (k-2)m|, \quad j > N+2.$$
 (3.2)

(b) If
$$2m(k-1)\text{Re }\{b\} \le (k-1)^2(1-m) - |b|^2(1+m)$$
, then
$$|a| \le (1+m)|b| \quad \text{for } i \ge 2$$

$$|a_j| \le \frac{(1+m)|b|}{j^n(j-1)}, \text{ for } j \ge 2,$$
 (3.3)

where $m=1-\frac{1}{M}$ $\left(M>\frac{1}{2}\right)$ and $b\neq 0$, complex.

The inequalities (3.1) and (3.3) are sharp

Proof. Since $f(z) \in H_n(b, M)$, so from (1.8) we have that

$$\sum_{k=2}^{\infty} k^n (k-1) a_k z^k = \left\{ b(1+m)z + \sum_{k=2}^{\infty} k^n [b(1+m) + m(k-1)] a_k z^k \right\} w(z) \quad (3.4)$$

which is equivalent to

$$\sum_{k=2}^{j} k^{n} (k-1) a_{k} z^{k} + \sum_{k=2}^{\infty} d_{k} z^{k} =$$

ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER

$$= \left\{ b(1+m)z + \sum_{k=2}^{j-1} k^n [b(1+m) + m(k-1)] \right\} a_k z^k w(z),$$

where d_i 's are some complex numbers.

Then since |w(z)| < 1, we have

$$\left| \sum_{k=2}^{j} k^{n} (k-1) a_{k} z^{k} + \sum_{j=k+1}^{\infty} d_{k} z^{k} \right| \leq$$

$$\leq \left| b(1+m)z + \sum_{k=2}^{j-1} k^{n} [b(1+m) + m(k-1)] a_{k} z^{k} \right|. \tag{3.5}$$

Squaring both sides of (3.5) and integrating round |z|=r<1, we get, after taking the limit when $r\to 1$

$$j^{2n}(j-1)^2|a_j|^2 \le (1+m)^2|b|^2 + \sum_{k=2}^{j-1} k^{2n} \{|b(1+m) + m(k-1)|^2 - (k-1)^2\}|a_k|^2.$$
(3.6)

Now there may be following two cases:

(a) Let $2m(k-1)\text{Re }\{b\}>(k-1)^2(1-m)-(1+m)|b|^2$. Suppose that $j\leq N+2$; then for j=2, (3.7) gives

$$|a_2| \le \frac{(1+m)|b|}{2^n}$$

which gives (3.1) for j=2. We establish (3.1), by mathematical induction. Suppose (3.1) is valid for $k=2,3,\ldots,j-1$. Then it follows from (3.6)

$$\begin{split} j^{2n}(j-1)^2|a_j|^2 &\leq (1+m)^2|b|^2 + \\ &+ \sum_{k=2}^{j-1} k^{2n} \{|b(1+m) + m(k-1)|^2 - (k-1)^2\} \frac{1}{k^{2n}((k-1)!)^2} \prod_{p=2}^k |b(1+m) + (p-2)m|^2 = \\ &= \frac{1}{((j-1)!)^2} \prod_{k=2}^j |b(1+m) + (k-2)m|^2. \end{split}$$

Thus, we get

$$|a_j| \le \frac{1}{j^n(j-1)!} \prod_{k=2}^{j} |b(1+m) + (k-2)m|,$$

which completes the proof of (3.1).

Next, we suppose j > N + 2. Then (3.6) gives

$$j^{2n}(j-1)^2|a_j|^2 \le (1+m)^2|b|^2 +$$

$$\begin{split} &+\sum_{k=2}^{N+1}k^{2n}\{|b(1+m)+m(k-1)|^2-(k-1)^2\}|a_k|^2+\\ &+\sum_{k=N+3}^{j-1}k^{2n}\{|b(1+m)+m(k-1)|^2-(k-1)^2\}|a_k|^2\leq\\ &\leq (1+m)^2|b|^2+\sum_{k=2}^{N+2}\{|b(1+m)+m(k-1)|^2-(k-1)^2\}|a_k|^2. \end{split}$$

On substituting upper estimates for $a_2, a_3, \ldots, a_{N+2}$ obtained above, and simplifying, we obtain (3.2).

(b) Let $2m(k-1)\text{Re }\{b\} \leq (k-1)^2(1-m)-(1+m)|b|^2,$ then it follows from (2.7)

$$j^{2n}(j-1)^2|a_j|^2 \le (1+m)^2|b|^2, \quad (j \ge 2)$$

which proves (3.3).

The bounds in (3.1) are sharp for the function f(z) given by

$$D^{n}f(z) = \begin{cases} \frac{z}{(1-mz)^{\frac{b(1+m)}{m}}}, & m \neq 0, \\ z \exp(bz), & m = 0. \end{cases}$$
 (3.7)

The bounds in (3.3) are sharp for the function $f_k(z)$ given by

$$D^{n} f_{k}(z) = \begin{cases} \frac{z}{(1 - mz^{k-1}) \frac{b(1+m)}{m(k-1)}}, & m \neq 0, \\ \\ z \exp\left(\frac{b}{k-1}z^{k-1}\right), & m = 0. \end{cases}$$
(3.8)

4. Maximization of $|a_3 - \mu a_2^2|$

We shall need in our discussion the following lemma:

Lemma 1. [5] Let $w(z) = \sum_{k=1}^{\infty} c_k z^k \in \Omega$, if μ is any complex number, then

$$|c_2 - \mu c_1^2| \le \max\{1, |\mu|\} \tag{4.1}$$

for any complex μ . Equality in (4.1) may be attained with the functions $w(z) = z^2$ and w(z) = z for $|\mu| < 1$ and $|\mu| \ge 1$, respectively.

Theorem 3. If a function f(z) defined by (1.1) is in the class $H_n(b, M)$ and μ is any complex number, then

$$|a_3 - \mu a_2^2| \le \frac{|b(1+m)|}{2 \cdot 3^n} \max\{1, |d|\},$$
 (4.2)

where

$$d = \frac{2 \cdot 3^n \mu b(1+m)}{2^{2n}} - [b(1+m) + m]. \tag{4.3}$$

The result is sharp.

Proof. Since $f(z) \in H_n(b, m)$, we have

$$w(z) = \frac{D^{n+1}f(z) - D^n f(z)}{[b(1+m) - m]D^n f(z) + mD^{n+1}f(z)} = \frac{\sum_{k=2}^{\infty} k^n (k-1)a_k z^{k-1}}{b(1+m) + \sum_{k=2}^{\infty} k^n [b(1+m) + m(k-1)]a_k z^{k-1}} = \frac{\sum_{k=2}^{\infty} k^n (k-1)a_k z^{k-1}}{b(1+m)} \left[1 + \frac{\sum_{k=2}^{\infty} k^n [b(1+m) + m(k-1)]a_k z^{k-1}}{b(1+m)} \right]^{-1}.$$
 (4.4)

Now compare the coefficients of z and z^2 on both sides of (4.4). We thus obtain

$$a_2 = \frac{b(1+m)}{2^n}c_1,\tag{4.5}$$

and

$$a_3 = \frac{b(1+m)}{2 \cdot 3^n} \{ c_2 + [b(1+m) + m]c_1^2 \}.$$
 (4.6)

Hence

$$a_3 - \mu a_2^2 = \frac{b(1+m)}{2 \cdot 3^n} [c_2 - dc_1^2], \tag{4.7}$$

where

$$d = \frac{2 \cdot 3^n \mu b (1+m)}{2^{2n}} [b(1+m) + m].$$

Taking modulus both sides in (4.7), we have

$$|a_3 - \mu a_2^2| \le \frac{|b(1+m)|}{2 \cdot 3^n} |c_2 - dc_1^2|. \tag{4.8}$$

Using Lemma 1 in (4.8), we have

$$|a_3 - \mu a_2^2| \le \frac{|b(1+m)|}{2 \cdot 3^n} \max\{1, |d|\}.$$

Finally, the assertion (4.2) of Theorem 3 is sharp in view of the fact that the assertion (4.1) of Lemma 1 is sharp.

5. Radius Theorem

The following theorem may be obtained with the help of (1.9) and Theorem 3 of Nasr and Aouf [7].

Theorem 4. Let the function f(z) defined by (1.1) be in the class $H_n(b, M)$.

Then

$$\operatorname{Re} \left\{ \frac{D^{n+1}f(z)}{D^nf(z)} \right\} > 0 \text{ for } |z| < r_n,$$

where

$$r_n = 2\left\{ |b|(1+m) + \left[|b|^2(1+m)^2 - 4\left\{ \text{Re } (b)\left(\frac{1+m}{m}\right) - 1 \right\} - 1 \right]^{\frac{1}{2}} \right\}^{-1}$$
 (5.1)

such that

$$|b|^2(1+m)^2 \ge 4 \left\{ \text{Re } (b) \left(\frac{1+m}{m} \right) - 1 \right\}.$$

The result is sharp for the function $f_0(t)$, where

$$D^{n} f_{0}(z) = z(1 - mz)^{-b\left(\frac{1+m}{m}\right)}$$
(5.2)

and

$$t = \frac{r \left[r - m \left(\frac{\overline{b}}{\overline{b}} \right)^{\frac{1}{2}} \right]}{m \left[1 - mr \left(\frac{\overline{b}}{\overline{b}} \right)^{\frac{1}{2}} \right]}.$$

Remarks on Theorem 4

- (i) Putting n = 0, we get the sharp radius of starlikeness of the class F(b, M) studied by Nasr and Aouf [7].
- (ii) Putting n = 1, we get the sharp radius of convexity of the class G(b, M) which is investigated by Nasr and Aouf [8].

References

- M.K. Aouf, Bounded p-valent Robertson functions of order α, Indian P. Pure Appl. Math. 16(1985), 775-790.
- [2] M.K. Aouf, Bounded spiral-like functions with fixed second coefficient, Internat. J. Math. Sci. 12(1989), no.1, 113-118.
- [3] P.N. Chichra, Regular functions f(z) for which zf'(z) is α -spirallike, Proc. Amer. Math. Soc. 49(1975), 151-160.
- [4] P.K. Kulshrestha, Bounded Robertson functions, Rend. Mat. (7)9(1976), 137-150.

- [5] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20(1969).
- [6] R.J. Libera, Univalent α-spiral functions, Canad. J. Math. 19(1967), 449-456.
- [7] M.A. Nasr and M.K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92(1983), 97-102.
- [8] M.A. Nasr and M.K. Aouf, Bounded convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 10(1983), 513-527.
- [9] M.A. Nasr and M.K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25(1985), 1-12.
- [10] M.A. Nasr and M.K. Aouf, On convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 10(1983), 513-527.
- [11] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013, pp.362-372, Springer-Verlag, Berlin, Heidelberg and New York.
- [12] R. Singh, On a class of starlike functions, J. Math. Soc. 32(1968), 208-213.
- [13] R. Singh and V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5(1974), 733-754.
- [14] P.I. Sizuk, Regular functions f(z) for which zf'(z) is α -spirallike, Proc. Amer. Math. Soc. 49(1975), 151-160.
- [15] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodzk. Nauki. Math. Przyrod 39(1971), 75-85.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF MANSOURA, MANSOURA, EGYPT

E-mail address: sinfac@mum.mans.eun.eg