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A KOROVKIN-TYPE THEOREM FOR THE APPROXIMATION OF
n-VARIATE B-CONTINUOUS FUNCTIONS

DAN BARBOSU

Abstract. The aim of this note is to extend the results from [1], [4] to the
case of n variate B-continuous functions in the sense of Bogel [5]. In the
section 1 we present the notions of n-variate B-continuous function and
uniform n-variate B-continuous function. Some relationship among these
notions are also presented. In the section 2, we discuss a Korovkin-type
criterion for the approximation by means of linear positive operators of the
B-continuous functions of n-variables. The main result of the paper is the
theorem 2.1. In the section 3 we present some applications of the theorem

2.1.

1. Let R’ be the space of functions f : I"™ —R, where I=[0,1] and n is a
positive integer. The notion of B-continuous function was introduced in [5] using the

operator Ay RI” SR’

AQ [f;M>MI] = Asl,sz [f;M7M/] =

= f (s1,82) = f (s1,22) = f (z1,82) + [ (z1,72) (1.1)

for any f eR!” and any points M (z1,x2), M’ (s1,52) € I*.

Let Ay :R! —R/ be the univariate operator given by

Ao [fs M, M) = A, [fraa] = f (s1) = f (21) (1.2)
for any f €R! and any points M (x1), M’ (s1) € I.
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If f eR!” and 1A s, A are the parametric extension of the operator (1,2),
then the following equality holds:

A81782 [f;xth] = (SlA Osy A) [f;mhx?] . (13)

The last remark allows us to define the operator of n-variate difference by
Definition 1.1: Let f €R!" be a given function and 4, A,...,,, A be the

parametric extensions of the operator (1,2). The operator A,, :R!" —R/! : given by
Ap[fs M, M') = Ag, s, 321, y2n] = (A 0. .05, A)[fi21,.. . 2] (1.4)

for any functions f €R!"and any points M (z1,...,2,), M’ (s1,...5,) € I" is called
operator of n-variate difference.

Remark 1.1: It is easy to see that the representation
n
Asl,“‘,sn [f;xlﬂ .. 7*%.2] = f (817 L 7Sn> - Zf (1'17 LR 7xi7178i7xi+17 LR 7xn) +
i=1

n

+ Z f (xlv"wxi—lvsivxi-i-lw"7xj—175jaxj+17"'7xn)_"'+(_1)nf (xla'“vxn)
ij=1

is valid.

Definition 1.2: The function f €eR!" is called B-continuous in the point
M (21,...,2,) € I"™ is the equality

(51,“.sn)hﬂngrl,‘..,xn) Ay sy 321,00, 2] =0 (1.6)

holds.

If f eR!" is B-continuous at every point of I™ one says that f is B-continuous
on I"™ and the set of all B-continuous functions on I"™ is denoted by Cj, (I™) .

Definition 1.3: The function f €R!" is uniform B-continuous on I™ if for
any € > 0 there exists a 6 = d (¢) > 0 so that for any point (z1,...,2,),(S1,...5,) €

I™ for which one has
|z1 —s1] <6, y|zn —sn| <O (1.7)

the inequality
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‘Asl,...,sn [f;1317...,172]| <€ (18)

holds.
Definition 1.4: The function f €R!" is B-bounded on I" if there exists a

positive number K so that:

Ay 215 a]| S K (V) (21,00 2n) (51,0 080) €1 (1.9)

The relationships between B-continuous, uniform B-continuous and B-
bounded functions are immediately and are contained in the following two lemmas:

Lemma 1.1: If f € C, (I") then f is uniform B-continuous on I™.

Lemma 1.2: If f € C, (I") then f is B-bounded on I™.

2. We will establish a Korovkin type theorem for the approximation on
Cy (I). First, we establish an auxiliary result.

Lemma 2.1: Let f € C, (I"™) be arbitrarily chosen. For any positive num-

ber £ > 0 there exist n positives numbers A; = A;(g),4 = 1,n so that for any
(1,...,2n),(51,...5n) € I" one has:
n
[Asysn 3215 2] < ni Tt ;Ai (&) (i — 5:)°. (2.1)

Proof. Because f € Cp(I"), from lemma 1.1 it follows that f is uni-

form B-continuous on I™ ie. for (z1,...,2n),(51,...8,) € I™ with |21 — 1] <
5(),...,|xn — sn| < d(¢) one has
By [fi1s sl < —. (2:2)
T n+1
Let € > 0 be a given positive number and (z1,...,2,), (s1,-..8,) € I". The
inequalities |z; — s;| < & (¢) can be valid for all i € {1,2,...,n}, for (n — 1) values
of i € {1,2,...,n}, ..., for one value of i € {1,2,...,n} or for none of the values
i€{1,2,...,n}.

If |z; — s;| < 0 () for any ¢ € {1,2,...,n}, from (2.2) one deduces that

€
n+1

|A51;<~-7Sn, [f;xla'”vxn]l < (23)

17



DAN BARBOSU

Because f € Cp (I™), from lemma 1.2 it follows that there exists a positive
number K such that
‘As“.-,sn [f33317~--737n“ < K. (2-4)

We suppose that there is only one value j € {1,2,...,n} so that |z; — s;| >

5 (¢)
If j =1 then |x1 —s1| > (), |za —s2| <0 (€),...,|Tn —sn| <0 (e) .
For (z1,...,2n),(81,...8,) € I with these properties we have
Ay 521, za]l S K- [5()] 77 (@1 = 1), (2.5)
This way, for the points (z1,...,2,),(s1,...8,) € I" for which there is only
one value j € {1,2,...,n} such that |z; — s;| > ¢ (¢) we have:

Dayon 321, x)| <K - [0(e)] 2 Z (zi —s5)°. (2.6)

In a similar way, for the points (z1,...,2y), (s1,...5n) € I"™ for which there
are only two values ¢,j € {1,2,...,n}, i # j such that |x; —s;| > 0 (), |z; — s >

J (€), we have:
By [fi21se szl <K -[5(0)] 72 > @ims)@-s) 27)

For all the points (z1,...,%n),(S1,...5,) € I" for which |z; —s;| > ¢ (¢),
(V)7 €{1,2,...,n} we have:

Agyos [fizn, x| SK - [5E)]7F (11— 51)% 0 (20— s0)?. (28)
With these observations, for any (21,...,25),(S1,...5,) € I"™ the next rela-
tion holds:
8 B n
Ay sn 521,y 2n]| < 1T [0 (c)] 2; (i — 5:)* +

FK-[5()]7% (a1 —s1)?. . (Tn — sn)? (2.9)
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Because si, z € [0,1] (V) k € {1,2,...,n} we have that (x) — sk)2 <1.

Using this observation and (2.9), one obtains:

|A31a~-75n [f’ Tiy.-. 7xn]‘ S

< €
“n+1

+K-BEIT {1+ 0@+ B @ - s)

K[ ()] {1 FE .+ ]o (5>]—2"+22} (22— 52)° 4 ...+

+K -[6(2)] % (20 — s0)>. (2.10)

Choosing then

AK - {1+ b))
Ao K- [5(2)]

it follows that (2.1) is valid.
Now we can establish the main result of the paper. We consider the following

functions on I :

eo(81,.--8n) =1,€;(81,...8n) = si,i =1,n ,(s1,...8,) € I™.

Theorem 2.1: Let {Ly, m,,.. m,} be a sequence of positive linear operators
mapping the functions of R into functions of R such that for all (x1,...2,) € I"
one has

1) Linyma,...om, (€031, ... Tn) = 1;
11) Lml,mg ..... Moy (60;9017 .. xn) =T + O‘Srflmz,“wmn (xla cee xn) )
i€{1,2,...,n};
“ee n 2 n 2
i) Ly ms,....man (Z €551, . .. xn> =>xi+ Oy ma,. (T1,...25),
=1 =

= i=1
where the sequences {aﬁ,fz,m%,,,mn (z1,... xn)} Ay mgnmy, (T1, - xy)} tend to

zero uniformly on I™ as my,ma,...my, tend to infinity.

Iff(-,...,") € Cy(I"), we introduce the notation:

(*) Uml,mz,‘.,mn (f;xlv .. xn) = Lml,mz,.‘.,mn ( f ((E1, .. xn) - A-,...,- [f;xla e mn])
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In the hypothesis i), ii), iii) the sequence {Um, ms,....m, (f)} converges to f

uniformly on I™, for any f € C, (I™).
Proof. It is obvious that Uy, m,,....m,, is a well-defined operator on Cy, (I™).

Let f € Cy (I™) be arbitrarily chosen, (z1,...2,) € I"™ and € > 0 given.

Because Ly, m.,...m,, is a linear operator reproducing the constant functions

.....

(from the condition 1)), we have:

f(xlwuxn)_Uml,mg ..... mn(f;xla-uxn):
= Ly ma,mn (A [ fi21, . 20)) (2.11)

From the positivity of Ly, m,,...,m, we have

|Lm1,m2,“.,mn ( g;T1,-- xn)‘ =

max {Lml,m27»--,mn, ( g; L1, .- xn) >Lm1,m2,...,mn ( —gi;%1,-.. xn)} (2]—2)

for any g € Cp (I™).
Applying this result to G (s1,...8,) = Qs .., [f;%1,...,22] and using
the monotonicity of Ly, ms,....m, and the lemma 2.1, we find (with A(e) =

max {A; (¢),..., A, (¢)}) the inequality:
|f (xlv"'xn)_Uml,mz ,,,,, mn(f;xl,...xn)|§

S Lm13m27~~~ymn

n+1+A(5)Z(xi—-)2;x17...,mn1. (2.13)

=1

After some transformation of (2.13) we obtain:

|f (T2, 20) — Unni,ma,...;mn (fiz1,oozn)| <

n
g 2.
< nt1 +A(5) Lml,mg,.“,mn (;emxlw--axn) -

—2- A (6) Z Zg - L7n1,mz,...,m,n (617 T1ye-- 7In,) +
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+A(E) Ly mo.oom,, (€03 71, 1) > 27 (2.14)

< n j_ 1 + A(E) {5?711 ----- My (xlv 7l'n) -2 Z;(L'ia%)l ,,,,, My (‘Tla axn)} . (215)
Taking into account that {a&fb)h,,_,mn (1,... ,xn)} Ay mn (@1, 20)}
tend to zero uniformly on I™ as my,ma, ..., m, tend to infinity, from (2.15) we obtain

the desired result.

Remark 2.1: The positive operator Ly, ms....m, : Co (I™") — Cp (I") is the
product of the parametric extension Ly} ,..., L7 of the positive linear univariate
operator L, : R* — R/,

Remark 2.2: In the case n=2, the theorem 2.1 reduced to the Korovkin-type
theorem established in [1]. The idea of the proof of the theorem 2.1 is suggested by
the idea from [1].

3. We shall present two applications of the theorem 2.1. For simplicity, we
consider the case n=3.

Example 1: We consider the Bernstein-Stancu s operator Bﬁ,? 1>, Bf,@ , Bfﬁ’g :
R’ — R, given by

Bl () @)= 5 7

B W =31

B () (2) = 3 f
k=1

where Wy, i (@, )W, j (Y,

% *Wmy i (iE,Ck),{EEI,

g

e *Wmea,j (yaﬁ)ayel7
k
ms

cWmg,k (Za’Y)yZEIa

KX~ Y
~— — ~—

) wmg.k (2,7) are the fundamental polynomials of
Bernstein-Stancu type, i.e.

r[i,fa] _(1_$)[7nlf’i,7o¢]
1lm1,—«a] 9

Wmy,i (J?, a) =

. y[j,—ﬁ]_(1,y)[7w—j,—[3]
) 1lme2,—8] ’

1
Wmey,j (ya ﬂ
J

3
8
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m3 2k = (1 z)lma—k. =]
Wmg,k (Za’Y> = 1lmz,—~]

k

In the precedent relation, z[»~° denotes the factorial power of x with the

exponent i and the increment -a, ez~ =z (z+a)...(z+ (i —1)a).

In same relation, the parameter «, 5 and ~ satisfy the condition @ = a (my) >
0, 3=p8(m2) >0,y =7(m3) >0.

Let suppose that f € (I3) ; the operators Ly,,, Lpmy, Lim, : Ch (13) —

Cy (13) are the parametric extensions of the operator Bf,f?,Bﬁ,@, Bﬁg :

Lm1 ( f)(m,y,z) = gf (miﬂyaz) 'Wml,i(xva)7x61§
Lus (F)@2) = S 1 (5.2) oy 08) v € 1

ms3
Ly (f)(@:2) = X f (09555 ) - wmgr (27), 2 € L.
k=1
The operator Ly, m,,ms is the product of the operators Ly,,, Ly, , Lm, and

it is defined by
Linymams ( ) (2,y,2) =

mi1 M1 mga ) . k
= Z:O Z%)kzof (i’ miza mig’) “Wmy i (33‘,05) “Wmy,j (yaﬁ) *Wmg,k (Z"Y) .
i=014=0 k=

By direct computation, one obtains

Ly ma,ms (€0) (2,9, 2) = 1, Ly my,ms (€1) (2,9, 2) = 2,
Liny ima,ms (€2) (%4, 2) = 4, Liny mo,ms (€3) (2,9, 2) = 2,
Ly g ms (e% +e3+ e%) (x,y,2) = 22+ y? + 22+

#2322 [ 0]

for any (z,y,2) € I3. It follows that the sequence { Ly, my.ms} mamacN Satisfies

mi,

the hypothesis of the theorem 2.1 with

(1) — @ —a® —0

mi,mz,m3 ~ T M1,m2,M3 mi,m2,ms3

and

z(1l—=x 1
5m1,m2,mS('r17x27x3) = g |: +a:| +

1+« mq
yl-y [ 1 z(1—2) ] 1
ST [mgw] T, [mgﬂ]

If «(my), B (ms),~ (ms3) tend to zero as my, mg, ms tend to infinity, from the

theorem 2.1 one obtains that the sequence {Upm, my.ms ( f)}, defined by

Uiy ,ma,ms (f)(z,y,2) =
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i i k ik i ik
-/ (m 'y Z)‘f(myy’w‘f(“f 'ma’ m3>+f (mmm)}

converges to f, uniformly on I3, as m1, mo, ms tend to infinity, for any f € Cp (13) .
This result was obtained first in the paper [1.3] without the theorem 2.1.

Example 2: In this example one consider the operator of Bleimann, Butzer

and Hahn E,Z,f :R! — R, given by

7

EN@ =3 () pns @ pso = [ ")

200 =30 () Tes e T =)

= \m2—J+ 1 ]
= O k — — ms3 zik
L(h)(z) =) h <m3—k+1> Tmak (2), Tmgk (2) = N e

k=0

The operator Ly, Lim,, Lm, are the parametric extensions of the operators

from above, i.e.

Lml ( f) (x,y,z) = Zf (Mayvz> *Pma i (1‘),

i=0

Lm2 ( f) (:C,y,Z) - Zg <.’£, 77’7/2—‘7]4-1,2) 'gmg,j (y),

ms3 k‘ _
LmS ( f) (aj,y,z) = Zh (a?,y, 7n3—k—|—1> 'Fm:&,k (Z) .
k=0

The product of these extensions is the positive linear operator

my1 MMy ms3 k’ _
Loy (1) 002) = 3331 (i ) o 0 Ty (0o 2
1=0 =0 k=0
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It is easy to see that {Lm, m,.ms} satisfies the hypothesis of theorem 2.1.
Applying then this theorem, it follows that the sequence {Up, ma,ms ()}, where

mi mi ms k 7
Um1,m2,m3 Zzz.f ( ) pml,z( ) "y, (y) “Tmg,k (2)-

mi1’ ms’ ms
i=0 i=0 k=0 L2

-{f (’yz)+f( )+f(x,y,k)—
my ms
s (2 g Z) iy (Zyk> iy <x g k) Ly (%Jk>}
mi Mo mq ms mg ms mi Mo Mg

converges to f, uniformly on I3 as mq, mo, ms tend to infinity.
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