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Abstract. In this paper we present a textual retrieval system based on clustering and tiered indexes. Our system can be used for exact phrase matching and also for improved keyword  search by employing term proximity weighting in the similarity measure. The document search process is constructed in an efficient way, so that not all the documents in the database need to be compared against the searched document.
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1. Introduction

Textual-based web search accounts for a large part of the traffic in the Internet nowadays. The majority of the Internet traffic no longer flows through core routers, but through edge distribution networks like the one of the Google search engine. Although there are several forms of information retrieval (i.e. textual information retrieval, sound-based information retrieval, video information retrieval etc.) the one that evolved the most is text-based information retrieval and this is reflected in the commercially web search engines available today. In this paper we present an information retrieval systems which offers besides keyword search functionality also document search functionality where the documents from the database most similar to a query document are returned. The index structure is based on clustering the saved documents and regular term-frequency/inverse-document-frequency indexes.


2. Information retrieval

Every information retrieval system is build on two main parts: the index structure and the retrieval/ranking algorithm. There are several space models for an IR system: the boolean model, the probabilistic model [Cre98] [Fuh92], vector space model, linguistic model.


Most IR systems extract keywords from the documents after an initial prefiltering phase (which includes stop words elimination, stemming)

And build an inverted index. Most IR systems assign each keyword t from document d the weight [Pap01]:
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where tft,d  is the number of occurrences of term t in document d (i.e. term frequency) and idf is the inverse term frequency (i.e. number of occurrences of term t in all indexed documents.

3.  The index structure of the system


Our system represents documents in the vector space model where each document is viewed as a vector with different document keywords and for each keyword the system maintains a regular term-frequency/inverse-document-frequency metric [Man09]. All documents indexed by the system are grouped in clusters/groups and each group has a leader which is chosen in a random way. When a query is submitted to the IR system, it first checks with the groups’ leaders and then it continues the search within the group with the leader most similar to our query. In this way all other non similar documents are excluded from the search and only the most relevant ones are considered which decreases the runtime of the query. This cluster pruning heuristic is very useful when new documents are added to the collection. In an IR system, this is done by a crawler. The algorithm used for building the index structure of our system is described in the following lines:

The crawler indexing algorithm:
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 R do

d <- getHtml(r);

d <- filter(d);

init v;

// v is the represantation of document d in a vector

// space model

for all c [image: image10.png]


 d do                  //for each word from document d


v[c] = [image: image11.png]wf_idf, 4



;

end for;

init Sim;

for all l [image: image12.png]


 L do

Sim(l) <- Similarity(v,l);   // calculating similarity between 

      // document d and cluster leaders

end for;

l’ <- MAX(Sim);

insert v in CLUSTER(l’);

end for;

The cluster based crawler first takes from the repository an url and gets the html source code of that page. The next step is text formatting, deleting the html tags, excluded words elimination (e.g. and, or etc.), deleting javascript and css code etc. The following step is index creation based on term frequency and the number of appearances of that word in the collection. Then the most similar cluster leader from the collection is found and the new document is added to the most similar cluster.

Another important part that could be included in an information retrieval system is related to tired indexes. When using tired indexes we set a similarity threshold at a higher value when we search for a document at the first tier and decrease that value at the tier two and so on until we find the desired number of documents. A more detailed version of tiered indexes heuristic is described in the next section.

4. The retrieval algorithm of the system


Our information retrieval system uses a combination of clustering and tiered indexes for document searches. This means that the user can search for a whole document and the system will return the most similar indexed documents. The retrieval algorithm is the following:

The document retrieval algorithm:
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         // vector representation in the vector space  

         // model and d is the searched document

Score <- [];

init minimum_threshold;

init similarity_threshold;

index <- 0;

while (index <= K) or (similarity_threshold > minimum_threshold) do


L’ <- first_three_similar_leaders(d, L, similarity_threshold);


L <- L [image: image17.png]


 L’;


for all l [image: image18.png]


 L’ do



for all d’ [image: image19.png]


 CLUSTER(l) do

    


if similar(d,d’) >= similarity_threshold





Score[d’] <- similar(d, d’);





index <- index +1;




end if;



end for;


end for;


similarity_threshold <- similarity_threshold – 1;

end while;

for all d’ [image: image20.png]


 Score do


Score[d’] <- similar(d, d’) + title_url_meta_relevance_score(d’);

end for;

return Score

In the previews algorithm you can see all steps necessary for retrieving top K similar documents from a system based on clusters and tiered indexes. The first step is the search of the most similar leaders from the clusters, which add some speed to the algorithm because the document is compared only to the leaders and not to all documents from the collection. After getting the first three most similar clusters, the document is searched in these leaders’ clusters. The function that is used for similarity calculation is an improved cosine similarity function:
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 are the two documents we want to compare, and the denominator represents the product of the Euclidean lengths of the two vectors calculated with:
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where M is the vector’s length and the log(N) part represents the relevance percentage of the words between the two documents. The relevance percentage is represented by the number of consecutive groups of words in the two documents. 


After the first most similar leaders were found, the next step takes place which contains the actual extraction of the K relevant documents that have a similarity degree at least as higher as the threshold. To improve the relevancy of the returned documents we keep in mind the order of the words in the documents. The extraction of the first K documents is based on tiered indexes and the following heuristics were used:

· In the first tier the document will be searched in the first 3 most similar leaders’ clusters and the extracted documents must be at least 50% similar with the searched document;

· If the results number after the first tier is lower than K, than the search goes to tier 2 where the similarity threshold is set to 40%;

· If, after tier 2 the returned documents is lower than K than it goes to tier 3 where the similarity threshold is set to 20%;

· If the tier 3 searched is done and there still aren’t K documents returned, than the found documents are returned

The last step in the algorithm is the rank and score calculation for the extracted documents. For score calculation, the following factors are taken in consideration: similarity percentage calculated with the formula (1), the words from documents title, key words from meta tags and the words from the url as follows: the score increases with 1 if the searched document’s words are found in the meta data, with 2 if the searched document’s words are found in document’s title and with 2 if the searched document’s words are found in the documents url. Considering the score computation, we can say that this algorithm has support for web pages that were optimized for searched engines.

5. Conclusions

In this paper we have presented an information retrieval system based on cluster and tiered indexes. The systems allows document keyword-based retrieval, but also document-based similarity retrieval.
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