SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Mathematics			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Mathematics Computer Science (in English)			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)			Intelligent methods and their applications in software engineering Metode inteligente și aplicațiile lor în ingineria software				
2.2 Course coordinator			Lect. PhD. Zsuzsanna Oneț-Marian				
2.3 Seminar coordinator			Lect. PhD. Zsuzsanna Oneț-Marian				
2.4. Year of study	3	2.5 Semester	6 2.6. Type of E 2.7 Type of Optional				Optional
				evaluation		discipline	
2.8 Code of theMLE7040				•	•		
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	1 sem
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					22
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					15
Evaluations					5
Other activities:					
3.7 Total individual study hours 102					
4.0 77 - 11					

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4 1	• 1	
4.1.	curriculum	

	Advanced Programming Methods	
4.2. competencies	Good programming skills in Python	

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	CE1.3 Using intelligent methods, techniques and algorithms in order to model several classes of
es es	problems
Professional competencies	CE1.4 Identify and explain intelligent techniques and algorithms and using them to solve specific problemsC4.3 Identifying appropriate models and methods to solve real problems
	CT1. To apply the rules for organized and efficient work.
	CT2. To respect the principles and norms of professional etiquette.
Transversal competencies	CT3. To use efficient learning methods and techniques for learning, documenting and searching
nsve pete	CT4. To develop the capacity to use knowledge, adapt at the requests of a dynamic society, and
lrai omj	properly communicate in English.
E o	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The goal of this course is to familiarize the students with intelligent search methods and clustering algorithms and how these can be used to solve different software engineering related problems.
7.2 Specific objective of the discipline	 Understand and recognize the components of a search/optimization problem. Learn about different software testing types and understand how to describe software testing activities as search problems. Recognize some of the most well-known bad smells in source code. Understand clustering algorithms and how they can work with software engineering data.

8. Content

8.1 Course	Teaching methods Remarks
1. Course organization.	- Interactive
Search-based software engineering.	exposure
Components of an optimization problem.	- Explanation.
2. Supervised and unsupervised learning.	- Conversation
Software metrics.	- Didactical
3. Hill climbing	demonstration
Simulated annealing	- Case studies

Tabu search
4. Genetic Algorithms
5. Applications of search algorithms for unit
testing
6. Applications of search algorithms for fuzz
testing
7. Applications of search algorithms for
regression testing I
8. Applications of search algorithms for
regression testing II
9. Clustering algorithms.
10. Clustering methods used for software testing
11. Intelligent methods for software refactoring
12. Software code embedding based approaches

Bibliography

1. Mark Harman, Bryan F. Jones: Search-based software engineering, Information and software Technology, Nr. 43, pp. 833-839, 2001

 Mark Harman, S. Afshin Mansouri, Yuanyuan Zhang, Search-based Software Engineering: Trends, Techniques and Applications, ACM Cmoputing Surveys, Vol. 45, Nr. 1, Article No. 11, pp. 1-61, 2012
 David Goldberg: genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Professional, 1989

4. Martin Fowler: Refactoring. Improving the design of Existing Code, Addison-Wesley Professional, 2018

8.2 Seminar	Teaching methods	Remarks
1. Seminar organization	- Conversation	- Seminar will be
2. Theoretical report topic selection	- Dialog	organized as 2 hours
3. Theoretical report paper selection	- Case studies	every two weeks.
4. Theoretical report presentation + discussions		- During the seminars,
5. Theoretical report presentation + discussions		each student will
6. Theoretical report presentation + discussions		present a theoretical
		report.

Bibliography

1. Mark Harman, Bryan F. Jones: Search-based software engineering, Information and software Technology, Nr. 43, pp. 833-839, 2001

 Mark Harman, S. Afshin Mansouri, Yuanyuan Zhang, Search-based Software Engineering: Trends, Techniques and Applications, ACM Cmoputing Surveys, Vol. 45, Nr. 1, Article No. 11, pp. 1- 61, 2012
 David Goldberg: genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Professional, 1989

4. Martin Fowler: Refactoring. Improving the design of Existing Code, Addison-Wesley Professional, 2018

8.3 Laboratory	Teaching methods	Remarks
1. Python libraries that will be used during the	- Presentation	- Lab will be organized
labs	- Conversation	as 2 hours every two
2. Search algorithms in Python	- Dialog	weeks.
3. Search algorithms for unit / fuzz testing	- Case studies	- During every lab,
4. Clustering algorithms in Python	- Team work	students will work in
5. Software refactoring	- Exercises	2-3 person teams and
6. Intelligent methods for software restructuring		will have to solve
		simple problems in
		Python related to the

	topics discussed at the lecture.
Bibliography	

1. Mark Harman, Bryan F. Jones: Search-based software engineering, Information and software Technology, Nr. 43, pp. 833-839, 2001

2. Mark Harman, S. Afshin Mansouri, Yuanyuan Zhang, Search-based Software Engineering: Trends, Techniques and Applications, ACM Cmoputing Surveys, Vol. 45, Nr. 1, Article No. 11, pp. 1-61, 2012 3. David Goldberg: genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Professional, 1989

4. Martin Fowler: Refactoring. Improving the design of Existing Code, Addison-Wesley Professional, 2018

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the software engineering field.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of basic notions about search and clustering algorithms and their applications in software engineering.	Written exam in the exam session	40%
10.5. Seminar	Capability of recognizing and understanding the discussed topics in a research paper.	Presentation of the content of one research paper	20%
10.6 Lab activities	Correctness and completeness of the lab projects solved in 2-3 person teams.	Continuous observation during the labs. Average grade of the 6 lab projects.	40%

0.6 Minimum performance standards

-

4 0 _

> Each students needs to demonstrate that he/she acquired an acceptable level of knowledge and understanding of the domain and that he/she is capable of coherently expressing this knowledge.

Written exam grade should be greater than 5 and final grade should be greater than 5.

At least 5 attendances are mandatory at the labs and 4 at the seminars, otherwise the student is not allowed to participate at the written exam.

At least one (out of six) lab project should be solved in order to be able to participate at the written exam.

Date	Signature of course coordinator	Signature of seminar coordinator
29.04.2024	Lect. PhD. Zsuzsanna Oneț-Marian	Lect. PhD Zsuzsanna Oneț-Marian

Date of approval

Signature of the head of department

Conf. PhD. Adrian Sterca