SYLLABUS

· · · · · · · · · · · · · · · · · · ·				
1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Mathematics			
1.5 Study cycle	Bachelor			
1.6 Study programme / Qualification	Mathematics and Computer Science - English			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the dis (ro)	scij	pline (en)	Operating systems for computers Sisteme de operare pentru calculatoare			
2.2 Course coordin	atc	or	Assoc. Prof. PhD. Sanda-Maria Avram			
2.3 Seminar coordi	nat	tor	Assoc. Prof. PhD. Sanda-Maria Avram			
2.4. Year of study	2	2.5 Semester	4 2.6. Type of evaluation E 2.7 Type of discipline mandatory		mandatory	
2.8 Code of the discipline MLE5238			LE5238			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 c	ourse	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 c	ourse	28	3.6 seminar/laboratory	28
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					13	
Additional documentation (in libraries, on electronic platforms, field documentation)					8	
Preparation for seminars/labs, homework, papers, portfolios and essays					9	
Tutorship					7	
Evaluations					7	
Other activities:						
		4.4				1

3.7 Total individual study hours	44
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	• Minimum knowledge of standard C programming.

5. Conditions (if necessary)

5.1. for the course	Class room equipped with video projector.
5.2. for the seminar /lab activities	• Laboratory with computers connected to the Internet and UNIX operating system or access to a UNIX server

6. Specific competencies acquired

	C6.1. Identify basic concepts and models for computing systems.
Professional	C6.2. Identify and explain the basic architectures for systems organization and management.
competencies	C6.3. Use techniques for installing, configuring and managing systems.
	C6.4. Establish performance metrics for response times and resource consumption; Configure access rights.
	CT1. Applying the rules of organized and efficient work, responsible attitudes towards
	the didactic-scientific field, for the creative use of one's own potential, respecting the
Transversal	principles and rules of professional ethics.
competencies	CT3. Use of efficient methods and techniques for learning, information, research and
	development of skills to capitalize on knowledge, to adapt to the requirements of a
	dynamic society and to communicate in Romanian and in an international language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Assimilation by the student of the main concepts underlying operating systems.
7.2 Specific objective	• Learning the main facilities offered by the Unix operating system.
of the discipline	• Shell programming and text file processing skills under Unix.
	• Managing multitasking applications using Unix processes.

8. Content

8.1 Course	Teaching methods	Remarks	
------------	------------------	---------	--

 1-3 Unix OS: external interfaces General operating system structure Regular expressions, file specification, generic specification Filters; general principles sort, awk, sed, sed, grep sh, csh, ksh, bash; general introduction Useful shell commands and external process management Shell programming; shell applications The structure of directories in Unix system Mount-ing concept Symbolic and hard links 	Exposure: description, explanation, examples, discussion of case studies
 4-7 Unix operating system: system calls, internal structures Files and processes under Unix I/O in C POSIX: open, close, lseek, read, write, dup, dup2 File protection Processes under Unix; structure of a process Process management system calls: fork, wait, exit, exec* Communication between processes: pipe, popen, FIFO POSIX threads 	Exposure: description, explanation, examples, discussion of case studies
 8-9 Filesystems General disk management and file systems Scheduling magnetic disk access DOS disk and file system internal structure; FAT table WindowsNT & 2000 disk and file system internal structure; NTFS mechanism, MFT file Unix disk and file system internal structure; i-node mechanism 	Exposure: description, explanation, examples, discussion of case studies
 10-14 General Theory of operating systems Types of computer systems and operating systems. I/O channel, multiple buffers. Multiprogramming. General structure and functions of an operating system Processes: specification, concurrency, semaphores, deadlock Process scheduling Memory management Scheduling swap between internal and secondary memory 	Exposure: description, explanation, examples, discussion of case studies

Bibliography

In English:

- 1. Albing, C., Vossen, J.P., Newhman, C., bash Cookbook: Solutions and Examples for bash Users, O'Reilly, USA, 2007.
- 2. Kernighan, B.W., Dennis, R.M., The C Programming Language, Prentice Hall, Massachusetts, 2012.
- 3. Stallings, W., Operating Systems: Internals and Design Principles, Pearson Education Limited, Essex, 2015.
- 4. Raymond, E.S., The Art of UNIX Programming, Addison-Wesley, Pearson Education Limited, USA, 2004.
- 5. Tanenbaum, A., Herbert, B., Modern Operating Systems, Pearson Education Limited, Essex, 2015.

In Romanian:

6. Boian, F., Vancea, A., Boian, R., Bufnea, D., Sterca, A., Cobarzan, C., Cojocar, D., Sisteme de operare, Ed. Risoprint, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
week 1-2. Unix commands for working with files	Dialogue, debate, case studies, examples, proofs	
week 3. Shell 1	Dialogue, debate, case studies, examples, proofs	
week 4. sed and grep utilities	Dialogue, debate, case studies, examples, proofs	
week 5. awk utility	Dialogue, debate, case studies, examples, proofs	
week 6. shell Programs	Dialogue, debate, case studies, examples, proofs	
week 7-8. C programs; working with Unix files	Dialogue, debate, case studies, examples, proofs	
week 9. UNIX Processes	Dialogue, debate, case studies, examples, proofs	
week 10. Communications between Unix processes: pipe	Dialogue, debate, case studies, examples, proofs	
week 11. Communications between Unix processes: FIFO	Dialogue, debate, case studies, examples, proofs	
week 12. Unix-Threads	Dialogue, debate, case studies, examples, proofs	
week 13. Closing lab activities	Dialogue, debate, case studies, examples, proofs	
week 14. Practical exam	Dialogue, debate, case studies, examples, proofs	

Bibliography

- 1. Albing, C., Vossen, J.P., Newhman, C., bash Cookbook: Solutions and Examples for bash Users, O'Reilly, USA, 2007.
- 2. Kernighan, B.W., Dennis, R.M., The C Programming Language, Prentice Hall, Massachusetts, 2012.
- 3. Stallings, W., Operating Systems: Internals and Desing Principles, Pearson Education Limited, Essex, 2015.
- 4. Raymond, E.S., The Art of UNIX Programming, Addison-Wesley, Pearson Education Limited, USA, 2004.
- 5. Tanenbaum, A., Herbert, B., Modern Operating Systems, Pearson Education Limited, Essex, 2015.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the study program of all major universities in Romania and abroad.
- This course provides the basic knowledge that any system administrator or programmer must have.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share of grade (%)
10.4 Course	- knowledge of the basic principles of the field	Final exam (regular session)	40%
10.5 Seminar/lab activities	- applying these concepts in problem-solving	Lab assignments (during the semester)	20%
	- developing shells and creating Unix processes	Practical exam (last week of the semester)	40%

10.6 Minimum performance standards

• At least grade 5 (from a scale of 1 to 10) for all types of examination.

- Lab attendance of minimum 90% (at least 12 out of 14 labs)
- Knowledge of theoretical and practical aspects of shell concepts and processes:
 - shell: working with files, control structures (especially for), access to command line parameters;
 - processes: one-way communication via pipe or FIFO.

Date	Signature of course coordinator	Signature of seminar coordinator
8.02.2025	PhD.Assoc.Prof. Sanda-Maria AVRAM	PhD.Assoc.Prof. Sanda-Maria AVRAM

Date of approval

.....

Signature of the head of department

PhD.Assoc.Prof. Adrian STERCA