SYLLABUS

1. Information regarding the programme

	9
1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline	Topology		
2.2 Course coordinator	Conf. dr. Adriana Nicolae		
2.3 Seminar coordinator	Conf. dr. Adriana Nicolae		
2.4. Year of study 2 2.5 Semester	3 2.6. Type of evaluation VP 2.7 Type of discipline Optional		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays				20	
Tutorship					10
Evaluations					20
Other activities				-	
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 1, 2
4.2. competencies	Analytic thinking

5. Conditions (if necessary)

5.1. for the course	Lecture hall equipped with blackboard
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	 C5.2 Use of mathematical arguments to prove mathematical results.
Transversal competencies	CT1 Application of efficient and rigorous working rules by adopting responsible attitudes towards the scientific and didactic fields for the development of the own creative potential respecting professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	To acquire fundamental knowledge about general topology and to
the discipline	apply it in solving problems.
7.2 Specific objective of the discipline	To acquire knowledge about elements of general topology (e.g., metric spaces, topological spaces, continuity, separation axioms,
	connectedness, compactness) and about important results in topology
	(e.g., the Urysohn Lemma, the Tietze Extension Theorem, the Arzelà-
	Ascoli Theorem, the Stone-Weierstrass Theorem).

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction: fundamental problems in topology.	Lecture, discussion, didactical	
Metric spaces, examples. Open sets in metric	demonstration, problematisation	
spaces		
2. Topological spaces, examples. Neighborhoods,	Lecture, discussion, didactical	
convergent sequences	demonstration, problematisation	
3. Bases of neighborhoods, bases of topologies.	Lecture, discussion, didactical	
Countability properties	demonstration, problematisation	
4. Generated topology, subspace, product space,	Lecture, discussion, didactical	
quotient space, examples. Interior, closure, and	demonstration, problematisation	
boundary of a set		
5. Continuous functions. Homeomorphisms	Lecture, discussion, didactical	
	demonstration, problematisation	
6. Product topologies. Separation axioms	Lecture, discussion, didactical	
	demonstration, problematisation	
7. Other examples of metric space. The uniform	Lecture, discussion, didactical	
topology	demonstration, problematisation	
8. Uniformly continuous and Lipschitz functions.	Lecture, discussion, didactical	
Complete metric spaces	demonstration, problematisation	
9. Connected topological spaces	Lecture, discussion, didactical	
10. Comment to a local and a second	demonstration, problematisation	
10. Compact topological spaces	Lecture, discussion, didactical demonstration, problematisation	
11. Compactness in metric spaces	Lecture, discussion, didactical	
11. Compactions in moute spaces	demonstration, problematisation	
12. The Tychonoff Theorem. Local compactness and	Lecture, discussion, didactical	
the one-point compactification	demonstration, problematisation	
13. The Urysohn Lemma. The Tietze Extension	Lecture, discussion, didactical	
Theorem. The Urysohn Metrization Theorem	demonstration, problematisation	
14. Spaces of continuous functions. The Arzelà -	Lecture, discussion, didactical	
Ascoli Theorem	demonstration, problematisation	
	l	l .

Bibliography

- 1. V. Anisiu, Topologie și teoria măsurii, Universitatea "Babeș-Bolyai", Cluj-Napoca, 1993.
- 2. R. Engelking, General topology, 2nd ed., Heldermann Verlag, Berlin, 1989.
- 3. G. B. Folland, Real analysis. Modern techniques and their applications, 2^{nd} ed., John Wiley & Sons, Inc., New York, 1999.
- 4. J. L. Kelley, General topology. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Springer, New York-Berlin, 1975.
- 5. J. R. Munkres, Topology, 2nd ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
- 6. B. Simon, A comprehensive course in analysis. Part 1: Real analysis, American Mathematical Society,

Providence, RI, 2015.		
7. S. Willard, General topology, Addison-Wesley Publish	ing Co., Reading, MassLondon-	Don Mills,
Ont., 1970.		
8.2 Seminar	Teaching methods	Remarks
1. Introduction: fundamental problems in topology.	Discussion, problem solving,	
Metric spaces, examples. Open sets in metric	didactical demonstration	
spaces		
2. Topological spaces, examples. Neighborhoods,	Discussion, problem solving,	
convergent sequences	didactical demonstration	
3. Bases of neighborhoods, bases of topologies.	Discussion, problem solving,	
Countability properties	didactical demonstration	
4. Generated topology, subspace, product space,	Discussion, problem solving,	
quotient space, examples. Interior, closure, and	didactical demonstration	
boundary of a set		
5. Continuous functions. Homeomorphisms	Discussion, problem solving,	
	didactical demonstration	
6. Product topologies. Separation axioms	Discussion, problem solving,	
5 01 1 0 1	didactical demonstration.	
7. Other examples of metric space. The uniform	Discussion, problem solving,	
topology	didactical demonstration	
8. Uniformly continuous and Lipschitz functions.	Discussion, problem solving,	
Complete metric spaces	didactical demonstration	
9. Connected topological spaces	Discussion, problem solving,	
10.0	didactical demonstration	
10. Compact topological spaces	Discussion, problem solving, didactical demonstration	
11. Compactness in metric spaces	Discussion, problem solving,	
11. Compactices in fieute spaces	didactical demonstration	
12. The Tychonoff Theorem. Local compactness and	Discussion, problem solving,	
the one-point compactification	didactical demonstration	
13. The Urysohn Lemma. The Tietze Extension	Discussion, problem solving,	
Theorem. The Urysohn Metrization Theorem	didactical demonstration	
14. Spaces of continuous functions. The Arzelà -	Discussion, problem solving,	
Ascoli Theorem	didactical demonstration	
-10001111001011		

Bibliography (in addition to the books mentioned before which also contain exercises)

- 1. A. V. Arkhangel'skiĭ, V. I. Ponomarev, Fundamentals of general topology: Problems and exercises, D. Reidel Publishing Co., Dordrecht, 1984.
- 2. O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. Kharlamov, Elementary topology. Problem textbook, American Mathematical Society, Providence, RI, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards. This discipline is useful in preparing future teachers and researchers in mathematics, but is also addressed to those who use various modern mathematical methods and techniques in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade
10.4 Course	- Knowledge of basic	- Two tests	- Mid-semester test:

	notions, examples and	- Lecture and seminar	35%
	results	activity	- Test at the end of the
	- Ability to prove		semester: 65%
	theoretical results		- Lecture and seminar
10.5 Seminar/lab	- Problem solving using		activity: bonus max.
activities	concepts and results		10%
	acquired during the		
	lecture classes		

10.6 Minimum performance standards

- The accumulation of at least 10 attendances at the seminar.
- Both the test grade at the end of the semester and the final grade should be at least 5. The bonus points are only awarded in this case.

Date Signature of course coordinator Signature of seminar coordinator 30.04.2024 Conf. dr. Adriana Nicolae Conf. dr. Adriana Nicolae

Date of approval

Signature of the head of department
Prof. dr. Andrei Mărcuș