SYLLABUS

	r8
1.1 I Higher education	BABES-BOLYAI UNIVERSITY
institution	
1.2 Faculty	MATHEMATICS AND COMPUTER SCIENCE
1.3 Departamentul	MATHEMATICS
1.4 Field of study	MATHEMATICS
1.5 Study cycle	MASTER
1.6 Study programme /	ADVANCED MATHEMATICS
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

0 0	-				
2.1 Name of the discipline	RINGS	, MODULES AND RI	EPRES	ENTATIONS	
2.2 Course coordinator		Conf. Dr. George Ci	prian M	lodoi	
2.3 Seminar coordinator		Conf. Dr. George Ci	prian M	lodoi	
2.4 Year of study 2 2.5 Seme	ester 4	2.6. Type of evaluation	Е	2.7 Type of discipline	DS
		evaluation		uiscipille	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	3.2 Of which: course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	36	Of which: course	24	3.6 seminar/laboratory	12
Learning using manual, course su	pport,	bibliography, course no	otes		45
Additional documentation (in libra	aries,	on electronic platforms,	field o	locumentation)	45
Preparation for seminars/labs, homework, papers, portfolios and essays				45	
Tutorship				34	
Evaluations				20	
Other activities:					
3.7 Total individual study hours				189	
3.8 Total hours per semester				225	
3.9 Number of ECTS credits				9	

4. Prerequisites (if necessary)

4.1 curriculum	Category Theory (MME3123);
	Group Theory and Applications (MME3103);
	Homological Algebra (MME3112)
4.2 competencies	Linear algebra, basics about rings, modules, categories, functors.

5. Conditions (if necessary)

5.1 for the course	N/A
5.2 for the seminar /lab	N/A
activities	

Professional competencies	 Understanding and use of main concepts and results concerning rings, modules and quiver representations Ability to use fundamental theoretical concepts and to apply them in various fields of mathematics fields of mathematics (Algebra, Geometry etc.) Ability to use scientific language and to write scientific reports and papers
Transversal competencies	 Ability to inform themselves, to work independently or in a team; Ability to identify and use advanced techniques and methods in order to realize a specific research. Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get advanced knowledge on rings, modules and quiver representations. To built the ability to use fundamental theoretical concepts and to apply them in various fields of mathematics
7.2 Specific objective of the discipline	 To construct some specific examples of rings, algebras and modules using the mechanism of quiver representations. To use the language of categories and functors in this particular case of the theory of modules and quiver representations.

8. Content

8.1 Course	Teaching methods	Remarks
1. Quivers and their representations	Lectures, didactical demonstration, conversation	
2. Rings, algebras and modules	Lectures, didactical demonstration, conversation	
3. Quiver representations vs modules; path algebras	Lectures, didactical demonstration, conversation	
4. Kernels, cokernels, exact sequences	Lectures, didactical demonstration, conversation	
5. Hom functors	Lectures, didactical demonstration, conversation	
6. Simples, projectives and injectives	Lectures, didactical demonstration, conversation	
7. Projective resolutions and injective	Lectures, didactical demonstration,	

coresolutions	conversation
8. Duality and Nakayama functor	Lectures, didactical demonstration, conversation
9. Admissible ideals and quotients of path algebras	Lectures, didactical demonstration, conversation
10. Homological dimensions	Lectures, didactical demonstration, conversation
11. Morita theory	Lectures, didactical demonstration, conversation
12. Tilted algebras	Lectures, didactical demonstration, conversation

Bibliography

- 1. 1. F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer, 1992.
- 2. H. Derksen, J. Weyman An Introduction to Quiver Representations, Graduate Studies in Mathematics 184, American Mathematical Society, 2017.
- 3. R. Schiffler Quiver Representations, CMS Books in Mathematcs, Springer, 2014.
- 4. S. Mac Lane *Categories for the Working Mathematician*, Graduate Text in Mathematics, Second Edition, Springer Verlag, 1998.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Examples of quiver representations	problematization, exercises, problem solving	
2. Universal properties; categorical	problematization, exercises, problem	
(re)formulations of kernels, cokernels, sums,	solving	
products etc.		
3. Example of modules over path algebras	problematization, exercises, problem solving	
4. Examples of simple, projective and injective objects	problematization, exercises, problem solving	
5. Computing some homological dimensions	problematization, exercises, problem solving	
6. Examples of Morita equivalent rings and algebras	problematization, exercises, problem solving	

Bibliography

- 1. S. Breaz, G. Calugareanu, G. Modoi, C. Pelea, D. Valcan: *Exercices in Abelian Group Theory*, Kluwer 2003.
- 2. H. Derksen, J. Weyman *An Introduction to Quiver Representations*, Graduate Studies in Mathematics 184, American Mathematical Society, 2017.
- 3. T.Y. Lam, *Exercises in classical ring theory*, Springer, 2003.
- 4. R. Schiffler Quiver Representations, CMS Books in Mathematcs, Springer, 2014.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of many important universities.

The mechanism of quiver representations is a relatively simple and intuitive method to construct examples of rings and modules satisfying various abstract properies, provinding a useful requisite for anyone which is interested in algebra, geometry and connex subjects of mathematics.

The methods and tools presented here are often used in specifical PhD research activities.

10. Evaluare

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Concepts and basic results	Final exam	20%
	Examples	Final exam	20%
10.5 Seminar / lab activities	Ability to use the concepts in order to solve standard problems	Final exam	20%
	Ability to solve advanced problems	Homeworks	40%
10.6 Minimum perf	ormance standards		
At least grade 5 out	10.		

Date	Signature of course coordinator	Signature of seminar coordinator
29.04.2024	Conf. Dr. George Ciprian Modoi	Conf. Dr. George Ciprian Modoi

Date of approval

.....

Signature of the head of department

Prof. Dr. Andrei Marcus