SYLLABUS # ${\bf 1.}\ Information\ regarding\ the\ programme$ | 1.1 Higher education | Babeş Bolyai University | |-----------------------|---| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computer Science | | 1.5 Study cycle | Master | | 1.6 Study programme / | Software Engineering | | Qualification | | ## 2. Information regarding the discipline | 2.1 Name of the discipline Software Quality | | | | | | | | | |---|---|----------|---|---|--|------------|--|--| | 2.2 Course coordinator Prof.PhD. Simona Motogna | | | | | | | | | | 2.3 Seminar coordinator | | | | Prof.PhD. Simona Motogna | | | | | | 2.4. Year of | 1 | 2.5 | 2 | 2.6. Type of E 2.7 Type of Compulsory | | | | | | study | | Semester | | evaluation | | discipline | | | ## **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 4 | Of which: 3.2 course | 2 | 3.3 | 1sem | |---|----|----------------------|----|--------------------|--------| | | | | | seminar/laboratory | + 1 pr | | 3.4 Total hours in the curriculum | 56 | Of which: 3.5 course | 28 | 3.6 | 28 | | | | | | seminar/laboratory | | | Time allotment: | | | | | | | Learning using manual, course support, bibliography, course notes | | | | | | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | | | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | | 60 | | Tutorship | | | | | 14 | | Evaluations | | | | | 20 | | Other activities: | | | | | - | | | | | | | | | 3.7 Total individual study hours | 144 | |----------------------------------|-----| | 3.8 Total hours per semester | 200 | | 3.9 Number of ECTS credits | 8 | ## **4. Prerequisites** (if necessary) | 4.1. curriculum | • None | |-------------------|-----------------------------------| | 4.2. competencies | Basic software development skills | # **5. Conditions** (if necessary) | 5.1. for the course | • None | |---------------------------|-------------| | 5.2. for the seminar /lab | • Computers | | activities | | 6. Specific competencies acquired | Professional competencies | Proficient use of verification, validation, and evaluation criteria and methods to his/her own software solutions, ability to formulate value judgements and to justify/explain constructive decisions Use advanced skills to develop and conduct complex software projects, of practical and/or research nature, using a wide range of quantitative and qualitative methods Advanced communication skills within different professional environments, appropriate use of computer science vocabulary, good English knowledge Demonstrate advanced modeling skills for economic, industrial, scientific phenomena and processes, by using fundamental mathematical, statistical, and computer science knowledge | |---------------------------|--| | Transversal competencies | Team work capabilities; able to fulfill different roles Professional communication skills; concise and precisedescription, both oral and written, of professional results, Antepreneurial skills; | # **7. Objectives of the discipline** (outcome of the acquired competencies) | 7.1 General objective of the discipline | Know and understand fundamental concepts of software quality. To be able to apply basic methods for software analysis and software quality assurance. | |--|---| | 7.2 Specific objective of the discipline | At the end of the course, students will acquire theoretical aspects regarding software quality, will be able to define a software quality assurance plan and will be able to apply quality assurance techniques. | ## 8. Content | 8.1 Course | Teaching methods | Remarks | |--|------------------------|---------| | 1. Introduction; characteristics, facts and statistics | Exposure, description, | | | | explanation, debate | | | | and dialogue, | | | | discussion of case | | | | studies | | | 2. Testing, inspection, walkthrough | explanation, debate | | | | and dialogue, | | | | discussion of case | | | | studies | | | 3. Software quality assurance and SQ Models | Exposure, description, | | | | explanation | | | 4. SQ factors – reliability | Exposure, description, | | | | explanation | | | 5. SQ factors – integrity, security, safety | Exposure, description, | | | | explanation | | | 6. SQ factors – efficiency, maintainability, | Exposure, description, | | | flexibility | explanation | | | 7. SQ factors – portability, reusability, interoperability | Exposure, description, explanation, discussion of case | | |--|--|------------------------| | | studies | | | 8. SQ metrics and tools | Exposure, description, | | | | explanation, | | | | discussion of case | | | | studies | | | 9. SQ standards | Exposure, description, | | | | explanation, | | | | discussion of case | | | | studies | | | 10. SQ standards – cont. | Exposure, description, | | | 2010 & 511110111 05 | explanation, | | | | discussion of case | | | | studies | | | 11. CMMI | Exposure, description, | | | 11. CIVIIVII | explanation, | | | | discussion of case | | | | | | | | studies | | | 12. SQ assurance vs. SQ control | Exposure, description, | | | | explanation, | | | | discussion of case | | | | studies | | | 13. SQ and software development phases | Exposure, description, | | | | explanation, | | | | discussion of case | | | | studies | | | 14. Reserved topic | | Usualy dedicated to an | | r | | invited guest from a | | | | software company | | | | bott, are company | #### Bibliography - 1. D. Galin Software quality assurance From theory to implementation, Addison Wesley, 2003 - 2. S.H. Kan Metrics and models in Software Quality Engineering. Addison Wesley, 2nd ed., 2003 - 3. R.A. Khan, K. Mustafe, S.I. Ahson Software Quality: Concepts and Practice, Alpha Science, 2006 - 4. G. Schulmeyer Handbook of Software Quality Assurance, Artech House, 2007 - 5. D. Spinellis. Code Quality: The Open Source Perspective. Addison Wesley, 2006 - 6. S. McConnell Code Complete, 2nd Edition, Microsoft Press, 2004 | 8.2 Seminar / laboratory | Teaching methods | Remarks | |--|------------------------|----------------------------| | 1. Apply and evaluate a Code review tool | Conversation, debate, | Seminar is organized as a | | | case studies | total of 7 hours – 2 hours | | | | every second week | | 2. Apply and evaluate a Metrics tool | Conversation, debate, | | | | case studies, examples | | | 3. Establish theme project | Conversation, debate, | | | | case studies | | | 4. Establish SQ moel | Evaluation | | | 5. Establish SQ factors to be followed and | Conversation, debate, | | | associated metrics | case studies | | | 6. Discuss results and refine metrics | Conversation, debate, | | | | case studies, examples | | | 7. Project presentation | Evaluation | | | Ribliography | | | #### Bibliography Students will search and use SQ tools suitable for their project # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - The course respects the IEEE and ACM Curricula Recommendations for Software Engineering studies; - The course exists at the major universities in Romania offering similar study programs; - The content of the course is considered by the software companies as important for average software development skills and quality assurance skills #### 10. Evaluation | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Share in the grade (%) | |-----------------------------|--|--------------------------|-----------------------------| | 10.4 Course | - know the basic principle of | Oral exam | 30% | | | the domain; - understand and apply the | | | | | course concepts | | | | | - problem solving | | | | | - SWOT analysis, risk | Workshop active | 10% | | | analysis | participation | | | 10.5 Seminar/lab activities | - be able to implement | -Practical examination | | | | course concepts | -documentation | | | | - use tools for different SQ | -portfolio | | | | aspects | -continuous observations | | | | - evaluate quality factors for | Laboratory assignments | 20% | | | an application | Project | 40% | #### 10.6 Minimum performance standards - At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work - Understand and apply software quality attributes in software development - > Evaluate software quality of applications | Date | Signature of course coordinator | Signature of seminar coordinator | |------------------|---------------------------------|-------------------------------------| | 27.04.2023 | Prof.PhD. Simona MOTOGNA | Prof.PhD. Simona MOTOGNA | | Date of approval | | Signature of the head of department | | | | Prof.dr. Laura Dioșan |