SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the discipline				Public-Key Cryptography				
2.2 Course coo	rdin	ator		Prof.PhD. Septimiu Crivei				
2.3 Seminar coordinator				Prof.PhD. Septimiu Crivei				
2.4. Year of	3	2.5	5	2.6. Type of	C	2.7 Type of	DS	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

J. Total Cstilla	iteu time (mours/scinc	SICI (of didactic activities)			
3.1 Hours per w	eek	3	Of which: 3.2 course	2	3.3	1
					seminar/laboratory	
3.4 Total hours i	n the curriculum	42	Of which: 3.5 course	28	3.6	14
					seminar/laboratory	
Time allotment:						hours
Learning using 1	nanual, course suppor	t, bib	oliography, course notes	S		14
Additional docu	mentation (in libraries	, on	electronic platforms, fi	eld do	cumentation)	8
Preparation for seminars/labs, homework, papers, portfolios and essays						14
Tutorship						14
Evaluations						8
Other activities:						0
3.7 Total individual study hours 58						
3.8 Total hours 100						
per semester						
3.9 Number of 4						
ECTS credits						

4.	Prerec	uisites	(if necessary))
----	--------	---------	----------------	---

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional competencies		C1.5 Development of program units and corresponding documentation C3.3 Use of computer science and mathematical models and tools for solving specific problems in the application field
---------------------------	--	---

	0
E	:ie
rsa	ŭ
ē	ē
>	et
US	Ž
ਫ਼	Ξ
۳	5
	ಲ

CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups

7. Objectives of the discipline (outcome of the acquired competencies)

	1 1 /
7.1 General objective of the	☐ To present mathematical algorithms used in public-key
discipline	cryptography.
7.2 Specific objective of the	□ Number-theoretic and algebra algorithms will be studied and
discipline	implemented in projects.

8. Content

8.1 Course	Teaching methods	Remarks
1. Classical cryptography. Examples	interactive exposure, explanation,	
	didactical demonstration	
2. Algorithm complexity, elements of number	interactive exposure, explanation,	
theory	didactical demonstration	
3. Public-key cryptography. RSA	interactive exposure, explanation,	
	didactical demonstration	
4. Algorithms for testing primality	interactive exposure, explanation,	
	didactical demonstration	
5. Algorithms for factoring integers	interactive exposure, explanation,	
	didactical demonstration	
6. Quadratic residues. Rabin public-key	interactive exposure, explanation,	
cryptosystem	didactical demonstration	
7. Polynomials. Finite fields	interactive exposure, explanation,	
	didactical demonstration	
8. ElGamal public-key cryptosystem	interactive exposure, explanation,	
	didactical demonstration	
9. Algorithms for computing discrete logarithms	interactive exposure, explanation,	
	didactical demonstration	
10. Factorization of polynomials: Berlekamp's	interactive exposure, explanation,	
algortihm	didactical demonstration	
11. Digital signatures	interactive exposure, explanation,	
	didactical demonstration	
12. Key-related protocols	interactive exposure, explanation,	
	didactical demonstration	
13. Practical aspects of public-key cryptosystems	interactive exposure, explanation,	
	didactical demonstration	
14. Eliptic-curve cryptography	interactive exposure, explanation,	
	didactical demonstration	

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

8.2 Laboratory	Teaching methods	Remarks
1. Classical cryptography	interactive exposure,	The lab is scheduled as 2

	algorithmization	hours every second week
2. Algorithm complexity	interactive exposure,	
	algorithmization	
3. Modular arithmetics	interactive exposure,	
	algorithmization	
4. Algorithms for testing primality	interactive exposure,	
	algorithmization	
5. Algorithms for factoring integers	interactive exposure,	
	algorithmization	
6. Public-key cryptography	interactive exposure,	
	algorithmization	
7. Practical aspects of public-key	interactive exposure,	
cryptosystems	algorithmization	

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The contents is directed towards practical applications of public-key cryptography. The topic is
present in the computer science study programme of all major universities.

10. Evaluation

10/ 2 / 10/10/10/10					
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the		
		methods	grade (%)		
10.4 Course	Use of basic concepts in examples	Assessments	50		
10.5 Lab	Implement course concepts and algorithms	Practical examination	50		
10.6 Minimum performance standards					
☐ Grade 5					

Date Signature of course coordinator Signature of seminar coordinator 26.04.2024 Prof. PhD. Septimiu CRIVEI Prof. PhD. Septimiu CRIVEI

Date of approval

Signature of the head of department Prof.PhD. Andrei MARCUS