SYLLABUS

1. Information regarding the programme

8 8 1	
1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme /	Information Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Pr				obability Theory and Statistics				
2.2 Course coordinator				Prof. Sanda Micula, PhD. Habil.				
2.3 Seminar coordinator				Prof. Sanda Micula, PhD. Habil.				
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	DF Compulsory	
study		Semester		evaluation		discipline		
2.8 Course Code MLE0090								

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cou	se	3	3.3	1 lab
					seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 cou	se	42	3.6	14
					seminar/laboratory	
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						25
Tutorship						9
Evaluations						20
Other activities:						-
3.7 Total individual study hours 94						
3.8 Total hours per semester 150						

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Mathematical Analysis	
	• Algebra	
4.2. competencies	Logical thinking	
	Average logical programming skills	

6

5. Conditions (if necessary)

5.1. for the course• Lecture room with large blackboard and video projecto	r
--	---

6. Specific competencies acquired

	3	C1.1 Recognizing and describing specific concepts to calculability, complexity, programming
) na	5	paradigms and modeling of computing and communication systems
sic		C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for
Professional comnetencies	2	explaining the structure and the functioning of hardware, software and communication systems
	5	C1.3 Building models for various components of computing systems
I o		C1.5 Providing theoretical background for the characteristics of the designed systems
		CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional
es es	2	reputation
rsa		
sve ete		CT3 Demonstrating initiative and pro-active behavior for updating professional, economical
Sug		and organizational culture knowledge
Transversal comnetencies		6

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	•	Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	•	Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Experiments, events, field of events, operations with events. Axiomatic definition of probability. Poincaré's formula. Classical definition of probability. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Conditional probability. Independent events. Total probability formula. Classical probabilistic models (Binomial, Hypergeometric, Poisson, Pascal, Geometric). 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random variables and random vectors. Discrete random variables. Probability distribution function. Cumulative distribution function. Properties, examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Discrete probability laws (Bernoulli, Binomial, Hypergeometric, Poisson, Negative Binomial, Geometric). Discrete random vectors. Operations with discrete random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Continuous random variables. Probability density function. Continuous probability laws (Uniform, Normal, Gamma, Exponential, Chi-square, Student, Fisher). 	 Interactive exposure Explanation Conversation Didactical demonstration 	

Independent random variables. Functions of continuous random variables.	
6. Numerical characteristics of random	Interactive exposure
variables. Expectation. Variance and	Explanation
standard deviation. Median. Moments	Conversation
(initial, central, absolute).	Didactical demonstration
7. Quantiles. Covariance and correlation	Interactive exposure
coefficient. Inequalities (Markov,	-
Chebyshev). Central limit theorem.	ExplanationConversation
Chebyshev). Central mint theorem.	
	Didactical demonstration
8. Descriptive statistics. Data collection.	• Interactive exposure
Graphical display of data. Frequency	Explanation
distribution, histograms, stem-and-leaf plots.	Conversation
Parameters of a statistical distribution.	Didactical demonstration
Measures of central tendency.	
9. Measures of variation. Correlation and	• Interactive exposure
regression. Linear regression, least squares	Explanation
estimation.	Conversation
	Didactical demonstration
10. Statistical inference. Sample theory.	Interactive exposure
Samples. Sample functions (sample mean,	Explanation
sample variance, sample moments).	Conversation
Estimation theory, basic notions. Confidence	Didactical demonstration
intervals for estimating the population mean	
and the population variance.	
11. Confidence intervals for comparing two	Interactive exposure
population means and two population	• Explanation
variances. Hypothesis testing, basic notions.	Conversation
Rejection region. Type I errors. Significance	Didactical demosntration
testing and P-values.	
12. Tests for the parameters of one population	Interactive exposure
Tests for comparing the parameters of two	• Explanation
populations. Examples. Robust tests.	Conversation
Summary of hypothesis testing.	Didactical demonstration
13. Properties of point estimators. Unbiased and	Interactive exposure
minimum variance estimators. Fisher's	Explanation
information. Absolutely correct estimators.	Conversation
The Rao-Cramer inequality. Efficient	
estimators. Methods of estimation (method	Didactical demonstration
of moments, method of maximum	
likelihood). Examples.	
14. Type II errors and the power of a test. Most	Interactive exposure
powerful tests and the Neyman-Pearson	-
lemma. Uniformly most powerful tests.	ExplanationConversation
Examples.	
	Didactical demonstration
Bibliography	

 Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
 Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.

3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

4. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.

Feller, W., An introduction to probability theory and its applications, Vol. 1, 3rd edition, WSE Wiley, 5.

6. DeGroot, M. H., Schervish, M. J., Probability 2 Laboratory	Teaching methods	Remarks
1. Introduction to Matlab.	 Interactive exposure Explanation Conversation Individual and group work 	The lab is structured as 2 hours per week, every other week
 Discrete random variables; Probability distribution function; Command PDF in Matlab. 	 Interactive exposure Explanation Conversation Individual and group work 	
3. Continuous random variables; Probability density function; CDF and Inverse CDF.	 Interactive exposure Explanation Conversation Individual and group work 	
 Numerical characteristics of random variables; Random number generators (command RND in Matlab); Computer simulations of discrete random variables. 	 Interactive exposure Synthesis Conversation Individual and group work 	
 Descriptive Statistics; Statistical measures; Correlation and regression; Confidence intervals for means and variances. 	 Interactive exposure Explanation Conversation Individual and group work 	
 Hypothesis and significance testing for means and variances. 	 Interactive exposure Explanation Conversation Individual and group work 	
7. Overview of statistical methods, lab test.	 Interactive exposure Explanation Conversation Individual work 	

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course follows the ACM and IEEE Curriculum Recommendations for Information Engineering students;

- The course exists in the studying program of all major universities in Romania and abroad; •
- The knowledge and skills acquired in this course give students a foundation for launching a career • in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may • choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the					
			grade (%)					
10.4 Course	- acquire the basic	Written exam	60%					
	principles in Probability							
	Theory and Mathematical Statistics;							
	- be able to apply	- participation in discussing	15%					
	correctly the course	and solving problems	1370					
	concepts on various	throughout the semester						
	applications	- additional documentation						
	- be able to apply course	- solving bonus problems						
	concepts and techniques							
	on practical problems							
	- problem solving							
10.5 Lab activities	- be able to implement	- participation in discussing	25%					
	course concepts and	and solving problems						
	algorithms in Matlab	throughout the semester						
	- be able to solve	- lab test (numerical						
	numerical statistical	statistical applications)						
	problems in Matlab							
10.7 Minimum performance standards								
A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the three activities mentioned above								
(written test, participation, lab evaluation)								

(written test, participation, lab evaluation)

Date	Signature of course coordinator	Signature of seminar coordinator

23.04.2024

Prof. Sanda Micula, PhD. Habil.

Prof. Sanda Micula, PhD. Habil.

Date of approval

Signature of the head of department

Prof. dr. Mărcuş Andrei