SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)			Understanding and Developing Large Language Models (LLMs) Înțelegerea și Implementarea de Modele Lingvistice Mari (LLMs)				
2.2 Course coordinator			A	Assist. Drd. Bogdan Mursa			
2.3 Seminar coordinator			Assist. Drd. Bogdan Mursa				
2.4. Year of study	3	2.5	6	2.6. Type of	E	2.7 Type of	Optional
		Semester		evaluation		discipline	
2.8 Code of the	ı	MLE5247		•	•	•	•
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	11ab +
				seminar/laboratory	2proj
3.4 Total hours in the curriculum	60	Of which: 3.5 course	24	3.6	36
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					12
Additional documentation (in libraries, on electronic platforms, field documentation)					16
Preparation for seminars/labs, homework, papers, portfolios, and essays					25
Tutorship				6	
Evaluations				6	
Other activities:					

3.7 Total individual study hours	65
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Python programming
	Linear Algebra
	• Statistics
	Data Structures and Algorithms
4.2. competencies	Average programming skills in a high-level programming
	language and very good knowledge on data structures and
	algorithms.

5. Conditions (if necessary)

5.1. for the course	Classroom with a video project device
5.2. for the seminar /lab	• Lab equipped with high-performance computers and Python installed.
activities	

6. Specific competencies acquired

o. Specii	ic competencies acquired				
	• CE1.3 Using the methods, techniques, and algorithms from AI in order to model several classes				
Ø	of problems				
Professional competencies	• CE1.4 Identify and explain specific AI techniques and algorithms and using them to solve specific problems				
ıl cor	• CE1.5 Integrating the models and the specific solutions from AI in dedicated applications				
ssions	• C4.2 Interpretation of mathematical models and computer science (formal)				
Profe	• C4.3 Identifying appropriate models and methods to solve real problems				
	• C4.5 Incorporation of formal models in specific applications in various fields				
	CT1 Ability to conform to the requirements of organized and efficient work, to develop a				
	responsible approach towards the academic and scientific fields, in order to make the most of				
Ø	one's own creative potential, while obeying the rules and principles of professional ethic.				
Transversal competencies	CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language.				

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	The goal of this course is to familiarize students with the field of
discipline	natural language processing, focusing particularly on the latest
	advancements brought by transformer architecture. Students will be
	taught how to analyze, design, implement, and evaluate various NLP
	problems. This course aims to elucidate how NLP serves as a bridge
	between human language and machine understanding, enabling tasks

	like text classification, entity extraction, text summarization, text generation, chatbots, among others. Specifically, all these will be accomplished by leveraging the latest technical breakthroughs in Large Language Models (LLMs)
7.2 Specific objective of the discipline	 Understand various architectures of Large Language Models (LLMs) with a focus on transformer architectures for tasks such as text classification, entity extraction, text summarization, text generation, and many others. Solve and analyze a natural language processing problem using specific theoretical frameworks and methodologies inherent to LLMs. Understand and develop effective strategies for prompt engineering, including techniques for eliciting desired responses from LLMs through well-crafted prompts. Learn techniques for fine-tuning and retraining Large Language Models to enhance performance and adaptability to specific NLP tasks. Understand the metrics used to evaluate the performance of LLMs and the principles behind deploying these models in real-world applications, including bot creation.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to LLMs and the Landscape of	• Interactive exposure	
Generative AI. Overview of the history of	 Explanation 	
Natural Language Processing with a focus on	 Conversation 	
Large Language Models (LLMs) and their	• Didactical	
significance in the field of generative artificial	demonstration	
intelligence. Examination of various		
applications and tasks LLMs are employed for,		
highlighting their versatility.		
2. The Evolution of Text Generation	• Interactive exposure	
Technologies. Tracing the development of text	• Explanation	
generation from pre-transformer models to	Conversation Didactical	
current methodologies.	• Didactical demonstration	
_		
3. Deep Dive into Transformer Architecture.	• Interactive exposure	
Techniques and strategies for utilizing	• Explanation	
transformers in text generation tasks.	• Conversation	
Exploration of transformer architecture, the	• Didactical	
backbone of modern LLMs.	demonstration	
4. The Principle of Attention in Transformers.	• Interactive exposure	
Understanding the "Attention is all you need"	 Explanation 	
concept and its revolutionary impact on LLMs.	• Conversation	
	• Didactical	
	demonstration	
5. Mastering Prompt Engineering. Learning	• Interactive exposure	
how to effectively design prompts to guide	• Explanation	
LLMs in generating desired outputs.	 Conversation 	

	- Didastical
	• Didactical
	demonstration
6. Pre-Training Large Language Models and	• Interactive exposure
Scaling Laws. Insights into the pre-training	• Explanation
process, computational challenges, and the	• Conversation
principles of scaling laws for LLMs.	• Didactical
	demonstration
7. Fine-Tuning LLMs for Specific Tasks.	• Interactive exposure
Strategies for instruction-based fine-tuning,	• Explanation
including single and multi-task adaptations.	• Conversation
	• Didactical
	demonstration
8. Advanced Fine-Tuning Techniques.	• Interactive exposure
Introduction to Parameter Efficient Fine-	• Explanation
Tuning (PEFT) methods such as LoRA and	Conversation
Soft Prompts.	• Didactical
	demonstration
9. Reinforcement Learning from Human	Interactive exposure
Feedback (RLHF). Fundamentals of aligning	Explanation
LLMs with human values through RLHF,	Conversation
including feedback collection and reward	Didactical
models.	demonstration
10. Enhancing LLM output using Reasoning	Interactive exposure
and Act. Explore the landscape of advanced	Explanation
fine-tuning and prompting strategies through	Conversation
method like Chain-of-thought (CoT, Reason	Didactical
Only), Act-only and ReAct across different	demonstration
domains, highlighting their task-solving	
trajectories and the distinct advantages of the	
ReAct approach.	
11. Implementing LLMs in Real-World	Interactive exposure
Applications & Introduction to LangChain.	Explanation
Combining the exploration of deploying LLMs	Conversation
in real-world applications with an introduction	Didactical
to LangChain, covering document loading,	demonstration
vector stores, embeddings, and the	
fundamentals of Retrieval Augmented	
Generation (RAG).	
12. Ethics of AI. Discover the evolving field of	Interactive exposure
generative AI, emphasizing the need for	• Explanation
responsible use and continuous innovation in	• Conversation
LLM-powered applications.	Didactical
	demonstration
13. Presentation of the student projects.	Interactive exposure
1 0	• Explanation
	• Conversation
	Dialogue, debate
14. Presentation of the student projects.	Interactive exposure
r - J	• Explanation
	• Conversation
	Dialogue, debate
	21

Bibliography

- 1. Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Pellat, M., Robinson, K., Valter, D., . . . Wei, J. (2022). Scaling Instruction-Finetuned Language Models.
- 2. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ReAct: Synergizing Reasoning and Acting in Language Models.
- 3. Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann, S., Kambadur, P., Rosenberg, D., & Mann, G. (2023). **BloombergGPT: A Large Language Model for Finance.**
- 4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need
- 5. Alammar, J,m Grootendorst, M. (2024). Hands-On Large Language Models.
- 6. Auffarth, B. (2023). Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs

Python, ChatGPT and other LLMs	m 11 .1 1	D 1
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to LLMs and Text Generation.	• Interactive exposure	
Get hands-on experience with basic LLM	• Explanation	
operations, focusing on generating text using	• Conversation	
pre-trained models.	Individual and	
	group work	
	Dialogue, debate	
2. Exploring Transformer Architectures. Dive	• Interactive exposure	
into transformer models, understanding	• Explanation	
attention mechanisms and their implementation	• Conversation	
in text generation tasks.	Individual and	
	group work	
	Dialogue, debate	
3. Advanced Text Generation and Prompt	• Interactive exposure	
Engineering. Experiment with advanced text	• Explanation	
generation techniques and learn the art of	• Conversation	
prompt engineering to guide LLM outputs.	Individual and	
	group work	
	Dialogue, debate	
4. Pre-Training and Fine-Tuning Strategies.	• Interactive exposure	
Hands-on session on the basics of pre-training	• Explanation	
LLMs and strategies for fine-tuning them on	 Conversation 	
specific tasks.	Individual and	
	group work	
	Dialogue, debate	
5. Reinforcement Learning from Human	• Interactive exposure	
Feedback (RLHF). Implement RLHF	Explanation	
techniques, setting up feedback loops and	• Conversation	
understanding reward models to align LLM	 Individual and 	
outputs with human values.	group work	
	Dialogue, debate	
6. Introduction to LangChain and Retrieval	• Interactive exposure	
Augmented Generation (RAG). Begin	• Explanation	
working with LangChain, focusing on	• Conversation	
document loading, vector stores, and	Individual and	
embeddings. Explore the implementation of	group work	
RAG for enhancing LLM applications.	Dialogue, debate	
7. Building a Chatbot. Students will apply the	• Interactive exposure	

knowledge gained in LangChain and RAG to to build a functional chatbot.

PROJECT

Phase 1 (Weeks 1 and 2): Introduction and Topic Selection

Presentation of a list of project topics that incorporate LLMs, focusing on the requirements from the standpoint of real-world clients.

Students choose or propose their own project topics, working in groups.

Discussion about the chosen projects to ensure feasibility and relevance by using the methodology of Generative AI project lifecycle.

Initial state-of-the-art analysis, focusing on how similar challenges are approached using LLMs.

Phase 2 (Weeks 3 and 4): Preparation and Planning

Following their selected topic, each team is tasked with identifying and defining a list of NLP applications, then conducting a literature review to determine the highest performing pretrained models for those specified use cases.

Phase 3 (Weeks 5 and 6): Adapt and Align model I.

Apply prompt engineering techniques to refine the model's output without undergoing retraining, followed by an evaluation of the model's performance.

Phase 4 (Weeks 7 and 8): Adapt and Align model II.

Implement fine-tuning methods to retrain the models, enhancing their performance for the particularities of the selected topic, then proceed to evaluate the model.

Phase 5 (Weeks 9 and 10): Adapt and Align model III.

Incorporate Reinforcement Learning from Human Feedback (RLHF) and reward models to tailor the LLM output more closely with human values.

Phase 6 (Weeks 11 and 12): LangChain and

Retrieval Augmented Generation (RAG) Utilizing LangChain and RAG, students are

- Explanation
- Conversation
- Individual and group work
- Dialogue, debate
- Interactive exposure
- Explanation
- Conversation
- Individual and group work

required to integrate the LLM they developed into	
an actual application workflow.	
This integration should ensure the LLM's output	
is in harmony with topic-specific requirements,	
accomplished through the employment of	
document loading, vector stores, and embeddings.	
Phase 7 (Weeks 13 and 14):	
Oral presentations	

Bibliography

- 1. Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Pellat, M., Robinson, K., Valter, D., . . . Wei, J. (2022). Scaling Instruction-Finetuned Language Models.
- 2. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ReAct: Synergizing Reasoning and Acting in Language Models.
- 3. Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann, S., Kambadur, P., Rosenberg, D., & Mann, G. (2023). **BloombergGPT: A Large Language Model for Finance.**
- 4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need
- 5. Alammar, J,m Grootendorst, M. (2024). Hands-On Large Language Models.
- 6. Auffarth, B. (2023). Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT and other LLMs

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Similar courses exist in the studying program of major universities in Europe and abroad.
- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The knowledge and skills gained from this course not only provide students with a foundation for embarking on a career in scientific research but also position them as sought-after LLM engineers in the industry, where there is a high demand for experts.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• The capability to utilize the knowledge acquired from the course and practiced in the labs to address practical problems and real-world requirements with applications in natural language processing and generative AI.	Oral examination (project)	60%
10.5 Seminar/lab activities	• The student possesses a thorough comprehension of Large Language Model	Practical Examination under continuous observation (solving lab tasks)	40%

(LLM) concepts, including transformer architectures, prompt engineering, and LangChain applications.	

10.6 Minimum performance standards

- Students must prove that they acquired an acceptable level of knowledge and understanding of the core concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving various computer vision problems.
- The final grade (weighted average between the two presented evaluation methods) should be at least 5 (no rounding, from a scale from 1 to 10).

Date	Signature of course coordinator	Signature of seminar coordinator
12.03.2024	Assist. Drd. Bogdan Mursa	Assist. Drd. Bogdan Mursa
Date of approval	Signature of the head of department	