SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Da	tabase Manage	ement Sy	vstems	
2.2 Course coor	din	ator	Lect. Dr. Sabina Surdu				
2.3 Seminar coo	ordi	nator	Le	ct. Dr. Sabina S	Surdu		
2.4. Year of	2	2.5	4	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8. Code of the	;	MLE5028		·	·		
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					11
Evaluations					18
Other activities:					
3.7 Total individual study hours 94					

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
	Databases
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course Lecture room with a video projector

5.2. for the seminar /lab	Lab room with SQL Server, Visual Studio
activities	

6. Specific competencies acquired

or ~ peen	te competencies acquirea
. 0	C 5.3 Using methodologies and database design environments for specific problems
Professional competencies	C 5.4 Evaluating the quality of various Database Management Systems in terms of their structure, functionality and extensibility
Pre	C 5.5 Developing projects involving databases
	CT1 - Applying organized and efficient work rules, responsible attitudes towards the
	didactic and scientific field, in order to creatively capitalize on one's own potential, while
Ŷ	respecting the professional ethics principles and rules
Transversal competencies	CT3 - Use efficient methods and techniques for learning, knowledge gaining, researching and developing abilities for knowledge capitalization and accommodation to the requirements of a dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To get acquainted with the fundamental concepts concerning concurrency control, database recovery, database security, query optimization, distributed databases
7.2 Specific objective of the discipline	 To create ADO.NET applications with data-bound controls To handle concurrently running transactions using pessimistic and optimistic isolation levels To optimize SQL queries

8. Content

8.1 Course	Teaching methods	Remarks
1-3. Introduction. Transactions, Concurrency	Interactive	
Control	presentation	
	Conversation	
	Examples	
	Explanation	
4. Database Recovery	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
5. Database Security	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
6-9. Evaluating Relational Operators. Query	Interactive	
Optimization	presentation	
	Conversation	
	Examples	
	Explanation	

10-11. Distributed Databases	Interactive
	presentation
	Conversation
	Examples
	Explanation
12. Data Stream Processing - Azure Stream	Interactive
Analytics, Azure Machine Learning	presentation
	Conversation
	Examples
	Explanation
13. Parallel Databases. Spatial Databases	Interactive
	presentation
	Conversation
	Examples
	Explanation
14. Problems	Interactive
	presentation
	Conversation
	Examples
	Explanation

Bibliography

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009

KNUTH, D.E., Tratat de programare a calculatoarelor. Algoritmi fundamentali, Editura Tehnică, București, 1974

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976

LEVENE, M., LOIZOU, G., A Guided Tour of Relational Databases and Beyond, Springer, 1999

LITCHFIELD, D., ANLEY, C., HEASMAN, J., GRINDLAY, B., The Database Hacker's Handbook: Defending Database Servers, John Wiley & Sons, 2005

LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002

SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (7th Edition), McGraw-Hill, 2019

ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, versiunea 2013-2014

ŢÂMBULEA, L., Baze de date, Litografiat, Cluj-Napoca, 2003

ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html

*** Azure Stream Analytics - technical documentation, <u>https://azure.microsoft.com/en-us/services/stream-analytics/</u>

*** Azure Machine Learning - technical documentation, <u>https://azure.microsoft.com/en-us/services/machine-learning/</u>

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar		
1. ADO.NET (I)	Conversation	
	Problems	
	Examples	
	Explanation	
2. ADO.NET (II)	Conversation	
	Problems	
	Examples	
	Explanation	
3. Transactions, Concurrency Control	Conversation	
	Problems	
	Examples	
	Explanation	
4. Multiversioning	Conversation	
0	Problems	
	Examples	
	Explanation	
5. Performance Tuning in SQL Server (I)	Conversation	
	Problems	
	Examples	
	Explanation	
6. Problems	Conversation	
	Problems	
	Examples	
	Explanation	
7. Performance Tuning in SQL Server (II)	Conversation	
	Problems	
	Examples	
	Explanation	
Laboratory		
1. Windows Forms application using ADO.NET to	Conversation	
interact with a SQL Server database	Problems	
	Examples	
	Explanation	
2. Generic Windows Forms application -	Conversation	
configuration file	Problems	
	Examples	
	Explanation	
3. Concurrency control	Conversation	
	Problems	
	Examples	
	Explanation	
Bibliography		
Course bibliography		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 to know and apply the concepts described at the course to solve problems 	• written exam	50%
10.5 Seminar/lab activities	A	 lab evaluation practical exam 	50%
10.6 Minimum performance standards			
To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical exam and lab evaluation.			

To attend the exam, a student must have at least 6 laboratory attendances and at least 5 seminar attendances, according to the Computer Science Department's decision: <u>https://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-29.04.2020.pdf</u>.

Date

Signature of course coordinator

Signature of seminar coordinator

Lect. Dr. Sabina Surdu

Lect. Dr. Sabina Surdu

Date of approval

Signature of the head of department

Conf. Dr. Adrian Sterca