SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	di	scipline	Databases				
2.2 Course coor	din	ator	Lect. Dr. Sabina Surdu				
2.3 Seminar coo	ordi	nator	Lect. Dr. Sabina Surdu				
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8. Code of the	;	MLE5027					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	3
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					21
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					11
Evaluations					8
Other activities:					
0.55		0.0			

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Lecture room with a video projector
5.2. for the seminar /lab	Lab room with SQL Server, Visual Studio

activities	
------------	--

6. Specific competencies acquired

te competencies acquired
C 5.1 Identifying basic concepts for data organization in databases
C 5.2 Identifying and explaining basic models for data organization and management in
databases
C 5.3 Using methodologies and database design environments for specific problems
C 5.4 Evaluating the quality of various Database Management Systems in terms of their
structure, functionality and extensibility
C 5.5 Developing projects involving databases
CT1 - Applying organized and efficient work rules, responsible attitudes towards the
didactic and scientific field, in order to creatively capitalize on one's own potential, while
respecting the professional ethics principles and rules
CT3 - Use efficient methods and techniques for learning, knowledge gaining, researching
and developing abilities for knowledge capitalization and accommodation to the
requirements of a dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the fundamental concepts concerning databases To gain a thorough understanding of the relational data model
7.2 Specific objective of the discipline	 To manage (to create, to modify) relational databases in SQL Server To analyze data using complex SQL queries To optimize SQL queries

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Databases	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
2. The Relational Data Model	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
3. SQL Queries	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
4-5. Functional Dependencies, Normal Forms	Interactive	
	presentation	

	Conversation
	Examples
	Explanation
6. The Relational Algebra	Interactive
o. The Relational Aigebra	presentation
	Conversation
	Examples
7 The Discourse of Detailers	Explanation
7. The Physical Structure of Databases	Interactive
	presentation
	Conversation
	Examples
	Explanation
8-10. Indexes. Trees. Hash files	Interactive
	presentation
	Conversation
	Examples
	Explanation
11. Evaluating the Relational Algebra Operators	Interactive
	presentation
	Conversation
	Examples
	Explanation
12. Conceptual Modeling	Interactive
	presentation
	Conversation
	Examples
	Explanation
13. Data Streams	Interactive
	presentation
	Conversation
	Examples
	Explanation
14. Problems	Interactive
I I I I ONIVIEW	presentation
	Conversation
	Examples
	Explanation

Bibliography

ABADI, D.J., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., ZDONIK, S.B., Aurora: A New Model and Architecture for Data Stream Management, The VLDB Journal, 12(2):120–139, 2003

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., ITO, K., MOTWANI, R., NISHIZAWA, I., SRIVASTAVA, U., THOMAS, D., VARMA, R., WIDOM, J., STREAM: The Stanford Stream Data Manager, IEEE Data Engineering Bulletin 26(1): 19-26, 2003

ARASU, A., CHERNIACK, M., GALVEZ, E., MAIER, D., MASKEY, A.S., RYVKINA, E., STONEBREAKER, M., TIBBETTS, R., Linear Road: A Stream Data Management Benchmark, Proceedings of The Thirtieth International Conference on Very Large Data Bases (VLDB 2004), 480-491, 2004

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009

GRIPAY, Y., LAFOREST, F., LESUEUR, F., LUMINEAU, N., PETIT, J.-M., SCUTURICI, V.-M., SEBAHI, S., SURDU, S., ColisTrack: Testbed for a Pervasive Environment Management System, Proceedings of The 15th International Conference on Extending Database Technology (EDBT 2012), 574-577, 2012

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976

LEVENE, M., LOIZOU, G., A Guided Tour of Relational Databases and Beyond, Springer, 1999

LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002

SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (7th Edition), McGraw-Hill, 2019

ȚÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, versiunea 2013-2014

ŢÂMBULEA, L., Baze de date, Litografiat, Cluj-Napoca, 2003

ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html

*** Azure Stream Analytics – technical documentation, https://azure.microsoft.com/en-us/services/stream-analytics/

0.2 C	T 1	D
8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar		
1. SQL - Data Definition Language	Conversation	
	Problems	
	Examples	
	Explanation	
2. SQL - Data Manipulation Language	Conversation	
	Problems	
	Examples	
	Explanation	
3. Stored Procedures, Dynamic SQL, Cursors	Conversation	
	Problems	
	Examples	
	Explanation	
4. Functions, Views, Triggers	Conversation	
	Problems	
	Examples	
	Explanation	
5. Indexes (I)	Conversation	
· /	Problems	
	Examples	
	Explanation	
6. Indexes (II)	Conversation	
	Problems	
	Examples	
	Explanation	

7. Problems	Conversation		
	Problems		
	Examples		
	Explanation		
Laboratory	2127		
1. Database Design	Conversation		
e e e e e e e e e e e e e e e e e e e	Problems		
	Examples		
	Explanation		
2. SQL Queries	Conversation		
	Problems		
	Examples		
	Explanation		
3. Altering the Database	Conversation		
	Problems		
	Examples		
	Explanation		
4. Database Testing	Conversation		
	Problems		
	Examples		
	Explanation		
5. Indexes	Conversation		
	Problems		
	Examples		
	Explanation		
Bibliography			
Course bibliography			

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 to know and apply the concepts described at the course to solve problems 	• written exam	50%
10.5 Seminar/lab activities	• to be able to apply the concepts from the course and seminar to design / alter a database, to analyze data with SQL queries, to optimize queries	lab evaluationpractical exam	50%
10.6 Minimum performance	e standards		•

To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical

exam and lab evaluation.

To attend the exam, a student must have at least 12 laboratory attendances and at least 5 seminar attendances, according to the Computer Science Department's decision: https://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-29.04.2020.pdf.

Date

Signature of course coordinator

Signature of seminar coordinator

Lect. Dr. Sabina Surdu

Lect. Dr. Sabina Surdu

Date of approval

Signature of the head of department

Conf. Dr. Adrian Sterca