SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the	e dis	discipline Computer Networks					
2.2 Course coordinator PhD. Assoc. Prof. Adrian Sergiu DARABAN					ABANT		
2.3 Seminar coordinator PhD. Assoc. Prof. Adrian Sergiu DARABANT				ABANT			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Code of	M	MLE5002					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	3.2 Of which: course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	3.5 Of which: course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					13
Other activities:					-

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•	Operating Systems, Computer System Architecture
4.2. competencies	•	Basic knowledge on networking, basis of network security, data
	encryption algorithms.	

5. Conditions (if necessary)

5.1. for the course	•	Classroom with network and Internet access and to laboratory equipment.
5.2. for the seminar /lab	•	Laboratory with Internet connected computers; Linux and Windows;
activities		

6. Specific competencies acquired

U. D	Jecii.
Professional	competencies
sal competencies	

Transver

- C6.1 Identification of basic concepts and models in computer networks and computer systems
- C6.2 Identification and explanation of basic architectures for systems and computer networks management.
 - C6.5 Implementation and programming of computer networking projects.
- C6.6 Defining and implementing network device security policies.
- CT1 Applying organized and efficient work rules, responsible attitude towards scientific/ teaching domains in order to obtain a creative exploitation of own potential, while respecting the principles and rules of professional ethics
- CT3 Use of effective methods and techniques for learning, information, research and capacity to exploit knowledge, to adapt to a dynamic society and communication in Romanian language and in a foreign language
- CT4 Collaboration and data information sharing using digital technologies.
- CT5 Definition and application of behavioral norms in computer networks Netiquette.
- CT6 Solving networking practical problems and situations.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand the fundamental principles and inner workings of a computer network and of Internet
7.2 Specific objective of the discipline	 Learning the underlying concepts and principles of modern computer networks with emphasis on protocols, architectures, and implementation issues; Learning to program networking applications using TCP/IP Learning and understand the layered Internet protocols architecture Have all the basis knowledge about TCP/IP – theoretical aspects and programming communicating applications

8. Content

8.1 Course	Teaching methods	Remarks
1. Computer Networks Introduction. Definition.	Exposure, conversation, explanation,	
Examples. Network Topologies.	didactical demonstration	
2. The socket programming API. Network	Exposure, conversation, explanation,	
programming using TCP and UDP.	didactical demonstration	
3. Protocols: definition. Protocol layers. The	Exposure, conversation, explanation,	
OSI reference model. The TCP/IP layered	didactical demonstration	
model.		
4. The functions and services of the IP layer.	Exposure, conversation, explanation,	
Structure of an IP datagram. IP addressing	didactical demonstration	
(classfull). Datagram check summing. The		
ARP protocol.		
5. The concept of Subnetworks and	Exposure, conversation, explanation,	
Supernetworks. CIDR. Network masks.	didactical demonstration	
6. The UDP protocol and services. The structure	Exposure, conversation, explanation,	
of an UDP datagram UDP ports and	didactical demonstration	
processes.		

7. The TCP protocol. Structure of a TCP segment. Principles of TCP data transmission.	Exposure, conversation, explanation, didactical demonstration
8. The TCP Sliding Window mechanism. Flow Control. Congestion avoidance.	Exposure, conversation, explanation, didactical demonstration
9. Broadcast and multicast communication. The ICMP protocol. Error and network state signaling.	Exposure, conversation, explanation, didactical demonstration
10. The application layer. HTTP, SMTP, FTP	Exposure, conversation, explanation, didactical demonstration
11. The Internet Domain Name System. The DNS protocol.	Exposure, conversation, explanation, didactical demonstration
12. Network routing. Distance based and link state based routing algorithms. Routing protocols: RIP, BGP, OSPF.	Exposure, conversation, explanation, didactical demonstration
13. The physical layer. Transmission media. Characteristics, fiber networks, wireless networks. Error detection and correction.	Exposure, conversation, explanation, didactical demonstration
14. Network Security; Netiquette and computer network behavior norms.	Exposure, conversation, explanation, didactical demonstration

Bibliography

- 1. J. Kurose, K. Ross, Computer Networking: A Top Down Approach, Addison-Wesley, rev2,3,4 2002-2007.
- 2. Douglas E. Comer, Internetworking with TCP/IP
 - a. Vol 1- Principles, Protocols, and Architecture
 - b. Vol 3- Client-Server Programming and Applications
- 3. G.R.Wright, R. Stevens, TCP/IP Illustrated vol 1,2, Addison Wesley.
- 4. Matt Naugle, Illustrated TCP/IP A Graphic Guide to protocol suite, John Willey & Sons, 1999.
- 5. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking API
- 6. Peterson, Larry Davie, Bruce: Computer Networks: A Systems Approach. Morgan Kaufman, (3rd ed.), 2003.
- 7. Stallings, William: Data and Computer Communications. Prentice Hall, (6th ed.), 2000.
- 8. Tanenbaum, Andrew S.: Computer Networks. Prentice Hall, (4th ed.), 2003.
- 9. Dr. Nasrine Abushakra: Netiquette: Modern Manners For A Modern World: The Ultimate Guide To Online Etiquette, ISBN 1523817569, 2016

8.2	Seminar / laboratory	Teaching methods	Remarks
1.	Laboratory Configuration. Necessary tools,	Explanation, dialogue, case studies,	
	Virtual machines and build systems;	examples, proofs	
2.	A simple client-server TCP application;	Explanation, dialogue, case studies,	
		examples, proofs	
3.	Concurrent TCP client-server applications;	Explanation, dialogue, case studies,	
		examples, proofs	
4.	Concurrent Multiplexed TCP- Servers. The select	Explanation, dialogue, case studies,	
	call. Network debugging – wireshark	examples, proofs	
5.	Simple UDP client-server; Security Handling;	Explanation, dialogue, case studies,	
		examples, proofs	
6.	Complex/Concurrent UDP applications. Ping.	Explanation, dialogue, case studies,	
	Traceroute. Ipconfig/ifconfig.	examples, proofs	
7.	TCP/IP programming -Mid term evaluation;	Practical tests	
8.	Packet Tracer - simple network simulation	Explanation, dialogue, case studies,	
		examples, proofs	
9.	Packet Tracer - Physical/logical network design	Explanation, dialogue, case studies,	
		examples, proofs	

10. Packet Tracer - Static Routing, NAT	Explanation, dialogue, case studies,
	examples, proofs
11. Packet Tracer – RIP Routing	Explanation, dialogue, case studies,
	examples, proofs
12. Packet Tracer – Packet filtering and VLANs	Explanation, dialogue, case studies,
	examples, proofs
13. Packet Tracer – Complex design	Explanation, dialogue, case studies,
	examples, proofs
14. Lab Evaluation.	Practical tests.

Bibliography

- 1. Douglas E. Comer, Internetworking with TCP/IP Vol 3- Client-Server Programming and Applications
- 2. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking API
- 3. Cisco Networking Academy Classes, http://cisco.netacad.net

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course covers the most important aspects necessary for a network engineer/architect in a network specialized company.

10. Evaluation

Date

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Course	know the basic principle of computer networks theory;apply the course concepts	Written exam- Moodle Test	50%
	- apply the course concepts - problem solving		
10.5 Seminar/lab activities	- TCP/IP programming skills and network simulation knowledge	- Mid-term and final term lab tests or overall lab grade (whichever applies)	50%
10.6 Minimum performa	nce standards		

At least a grading of 5 (from a scale of 1 to 10) at both theoretical exam and laboratory assessments.

Signature of seminar coordinator

.16/04/2024 DARABANT	Assoc Prof PhD Adrian Sergiu DARABANT Assoc Prof PhD Adrian Sergiu
Date of approval	Signature of the head of department

Signature of course coordinator