SYLLABUS

1. Information regarding the programme			
1.1 Higher education	Babeș-Bolyai University, Cluj-Napoca		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Computer Science		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	discipl	ine (en)	Da	Data Structures and Algorithms			
(ro)			Structuri de Date și Algoritmi				
2.2 Course coordinator		Lect. PhD. Oneț-Marian Zsuzsanna					
2.3 Seminar coordinator			Le	Lect. PhD. Oneț-Marian Zsuzsanna			
2.4. Year of	1	2.5	2	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Code of theMLE5022							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1
					lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					10
Other activities:					
3.7 Total individual study hours		69			•
3.8 Total hours per semester		125			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•	Fundamentals of programming

5

10	•
42	competencies
••••	competencies

• Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional competencies	C4.1. Definition of concepts and basic principles of computer science, and their mathematical models and theories.
Professional competencie	C4.3. Identification of adequate models and methods for solving real problems
Pre	C4.5. Adoption of formal models in specific applications from different domains
sal cies	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transversal competencies	CT3. Use efficient methods and techniques for learning, gaining knowledge, researching and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures (arrays, linked lists, heaps, hash tables, binary trees) that can be used to implement abstract data types.
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure/abstract data type libraries.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
• Data abstractization and encapsulation	- Examples	
Pseudocode conventions	- Didactical	
Complexities	demonstration	

2 Amorg Itorotors	Eurocouro
2. Arrays. Iterators	- Exposure - Description
Dynamic array	- Conversation
Amortized analysis	- Didactical
• Interface of an iterator	demonstration
3. Abstract Data Types	- Exposure
ADT Set: description, domain,	- Description
• ADT Set, description, domain, interface and possible representations	- Conversation
 ADT Map: description, domain, 	- Didactical
interface and possible representations	demonstration
· ·	demonstration
• ADT Matrix: description, domain, interface and possible representations	
· ·	
• ADT MultiMap: description, domain,	
interface and possible representations	E
4. Abstract Data Types II	- Exposure
• ADT Stack: description, domain,	- Description - Conversation
interface and possible representations	- Didactical
• ADT Queue: description, domain,	
interface and possible representations	demonstration
• ADT PriorityQueue: description,	
domain, interface and possible	
representations	
• ADT Deque: description, domain,	
interface and possible representations	
• ADT List: description, domain,	
interface and possible representations	_
5. Linked Lists	- Exposure
• Singly linked list: representation and	- Description
operations	- Conversation
• Doubly linked list: representation and	- Didactical
operations	demonstration
Iterator for linked lists	- Case study
6. Linked Lists II	- Exposure
• Sorted linked lists: representation and	- Description
operations	- Conversation
Circular linked lists: representation	- Didactical
and operations	demonstration
• Linked lists on arrays: representation	
and operations	
7. Binary Heap	- Exposure
• Representation, specific operations	- Description
HeapSort	- Conversation
	- Didactical
	demonstration
8. Hash Table	- Exposure
Direct address tables	- Description
• Hash tables: description, properties	- Conversation
Collision resolution through separate	- Didactical
chaining	demonstration
9. Hash Table II	- Exposure

 Collision resolution through coalesced chaining Collision resolution through open addressing 	 Description Conversation Didactical demonstration
 10. Hash tables III Perfect hashing Linked hash tables Containers represented over hash tables 	 Exposure Description Conversation Didactical demonstration
 11. Trees Concepts related to trees Applications of trees Binary Trees Description, properties Domain and interface of ADT Binary Tree Tree traversals: recursive/non recursive algorithms. 	 Exposure Description Conversation Didactical demonstration
 12. Binary Search Trees Description, properties Representation Operations: recursive and non-recursive algorithms Containers represented over binary search tables 	 Exposure Description Conversation Didactical demonstration
13. Balanced Binary Search TreesAVL Trees	 Exposure Description Conversation Didactical demonstration
14. Applications and data structure libraries in different programming languages (Python, C++, Java, C#)	 Examples Exposure Description Conversation Didactical demonstration

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.

1. ADT Bag with generic elements. Representations and implementations on an	- Exposure - Conversation
array. Iterator for ADT Bag.	- Examples
	- Debate
2. Complexities	- Exposure
	- Examples
	- Debate
	- Conversation
3. Sorted Multi Map – representation and	- Exposure
implementation on a singly linked list.	- Examples
	- Debate
	- Conversation
4. Bucket sort, Lexicographic sort, radix sort.	- Exposure
Merging two singly linked lists	- Examples
	- Debate
	- Conversation
5. Hash tables – collision resolution through	- Exposure
separate chaining	- Examples
	- Debate
	- Conversation
6. Hash tables. Collision resolution through	- Exposure
coalesced chaining.	- Examples
coulebeed enaming.	- Debate
	- Conversation
7 Dinory Troos	
7. Binary Trees	- Exposure
	- Examples
	- Debate
	- Conversation

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.3 Laboratory	Teaching methods	Remarks
		Laboratory is structured
		as 2 hour classes every
		second week.
		Laboratory problems
		assigned at a lab have to
		be presented in the next
		lab (exception is Lab1).
		Every laboratory focuses
		on a given data structure.
		Students will receive a
		container (ADT) that has
		to be implemented using
		the given data structure.

		1
Lab 1: Dynamic Array	- Exposure	To be presented at Lab 3
- Example of a solved lab assignment (Demo)	- Examples	
	- Conversation	
Lab 2: Discussion about the Demo. Example of an	- Exposure	During the lab students
extra operation	- Examples	will get help with their
	- Conversation	first assignment.
Lab 3: Linked lists with dynamic allocation	- Exposure	Lab1 and Lab2 have to be
	- Examples	presented
	- Conversation	-
Lab 4: Linked lists on arrays	- Exposure	
	- Examples	
	- Conversation	
Lab 5: Hash Table	- Exposure	
	- Examples	
	- Conversation	
Lab 6: Binary Search Tree	- Exposure	
	- Examples	
	- Conversation	
Lab 7: Presentation of problem from Lab 6.	- Exposure	
	- Examples	
	- Conversation	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts 	Written evaluation (in the exam session): written exam	70%
10.5 Laboratory	• C++ implementation	Correctness of the	30%

	 of the concepts and algorithms presented at the lectures Lab assignment documentation Respecting the deadlines for lab presentation 	implementation and documentation (representation, specifications, algorithms, complexities).	
10.6 Seminar	• Seminar activity	Active participation at the discussions during the seminar (asking and answering questions, volunteering to solve a problem, etc.)	Maximum 0.5 points bonus, added to the final grade

10.6 Minimum performance standards

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 5 seminar attendances and 6 laboratory attendances.
- For successfully passing the examination, a student must have at least 5 for the written exam, and minimum 5 as a final grade.

Date	Signature of course coordinator	Signature of seminar coordinator
27.04.2024	Lect. PhD. Oneț-Marian Zsuzsanna	Lect. PhD. Oneț-Marian Zsuzsanna

Date of approval

Signature of the head of department

Assoc. Prof. PhD. Sterca Adrian