SYLLABUS

i internation regarding the programme				
1.1 Higher education	Babeş Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Applied Computational Intelligence			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Ap			plications of Computational Linguistics					
2.2 Course coordinator				Lecturer PhD. Dana Lupsa				
2.3 Seminar coordinator				Lecturer PhD. Dana Lupsa				
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory	
study		Semester		evaluation		discipline		
2.8 Course code MME8062						·		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem + 1pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					44
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					20
Evaluations					20
Other activities:					
3.7 Total individual study hours 144					•
3.8 Total hours per semester 200					
3.9 Number of ECTS credits 8					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Average programming skills
	Knowledge of data structures

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

r			sinpeteneres acquirea
	es	•	Knowledge, understanding and use of IR concepts and their algorithms
Professional	competencies	•	Knowledge, understanding and use of of MT systems
ŝŝić	iter		
lee	be		
	MO		
	Ŭ		
		•	Perform Internet-based research.
Ξ	les	•	Ability to use techniques specific to information retrieval and machine translation.
rsa	nci		
Transversal	competencies		
ans	du		
Ir:	COL		
L '	•		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Understand how IR and MT systems works Identify techniques for information retrieval, language translation
7.2 Specific objective of the discipline	 Explain basic information storage and retrieval concepts. Describe what issues are specific to efficient information retrieval. Perform Internet-based research. Design and implement a small to medium size information storage and retrieval system, or digital library. Understand techniques for information retrieval, language translation Study the usage of corpora. Identify examples of corpora for MT

8. Content

8.1 Course	Teaching methods	Remarks
1. Ontologies	Exposure, examples,	
	discussion	
2. Boolean and set models	Exposure, examples,	
	discussion	
3. Elements of VSM models	Exposure, examples,	
	discussion	
4. Inverted Index	Exposure, examples,	
	discussion	
5. Statistical properties of texts.	Exposure,	
	description,	
	explanation,	
	examples, case	
	studies	

6. 6.1 Dictionaries and tolerant retrieval 6.2	Exposure,
Meta-data, fields and zones	description,
	explanation,
	examples, case
	studies
7. Evaluation in IR	Exposure,
	description,
	explanation,
	examples, case
	studies
8. Semantic aspects	Exposure,
	description,
	explanation,
	examples, case
	studies
9. Relevance feedback. Query expansion.	Exposure,
	description,
	explanation,
	examples, case
	studies
10. Probabilistic retrieval	Exposure, examples,
	discussion
11. Language models	Exposure, examples,
	discussion
12. Web as graph: link analysis	
13. Efficient scoring and ranking: issues. Inexact	Description,
top k retrieval	examples, case
	studies, discussion
14. Machine translation (MT).	Exposure,
	description,
	explanation,
	examples, case
	studies, discussion

Bibliography

1. ALLEN, J.F. Natural Language Semantics, Wiley-Blackwell; 1 edition, 2001

- 2. D. Arnold, L. Balkan, S. Meijer, R. Humphreys, L. Sadler, *Machine Translation: An Introductory Guide, Manchester*, UK: NEC Blackwell, 1994.
- 3. R. BAEZA-YATES, B. RIBEIRO-NETO, Modern Information Retrieval, Addison-Wesley, 1999
- 4. E. CHARNIAK: Statistical language learning, MIT Press, 1996.
- 5. O. DAMERON, Ontology-based methods for analyzing life science data. Bioinformatics, Univ. Rennes, 2016
- 6. C.MANNING, H.SCHUTZE, Foundation of statistical natural language processing, MIT, 1999.
- 7. C. MANNING, P. RAGHAVAN, H. SCHUTZE, *Introduction to Information Retrieval*, Cambridge University Press, 2008.
- 8. R. MITKOV ed., *The Oxford Handbook of Computational Linguistics* (Oxford Handbooks in Linguistics), 2005

9. http://protege.stanford.edu

- 10. https://meshb.nlm.nih.gov/
- 11. G.M. Linders, M.M. Louwerse, *Zipf's law revisited*: Spoken dialog, linguistic units, parameters, and the principle of least effort. Psychon Bull Rev (2022)
- 12. Hugh E. Williams, Justin Zobel, Dirk Bahle, Fast phrase querying with combined indexes, ACM

Transactions on Information Systems, Volume 22, Issue 4, 2004 pp 573–594

- 13. Singhal A., Buckley C., Mitra M., Pivoted Document Length Normalization, SIGIR 1996
- 14. Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, Jason Zien, *Efficient Query Evaluation using a Two-Level Retrieval Process*, 2003

15. T. Suel, S. Ding, Faster top-k document retrieval using block-max indexes. SIGIR'2011.

16. Huahai, Yunyao , 2021 , T-Wand: Beat Lucene in Less Than 600 Lines of Code, https://yyhh.org/blog/2021/11/t-wand-beat-lucene-in-less-than-600-lines-of-code/

8.2 Seminar / laboratory	Teaching methods	Remarks
1,2. Ontologies	Interactive exposure	
Examples. Problems	Explanation	
Survey of available information sources. Choose	Conversation	
paper topics and schedule presentations	Didactical demonstration	
3,4: Retrieval and ranking examples. Experiments	Dialogue, examples	
5: Applications of theoretical techniques.	Dialogue, case	
Experiments.	studies, examples	
6. Research report presentations	Conversation	
7: Recent research in CL	Interactive exposure	
	Conversation	

Bibliography

- 1. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval. Cambridge, England: Cambridge University Press, 2008. http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
- 2. https://protege.stanford.edu/
- 3. http://www.mt-archive.info/
- 4. http://www.statmt.org/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Two fields of CL with immediate applications in real life are IR and MT. IR systems are used on an everyday basis by a wide variety of users. The Internet has proven to be a huge stimulus for MT, with hundreds of millions of pages of text and an increasingly global -- and linguistically diverse public.
- The course respects ACM Curriculla Recommendations for Computer Science studies

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 the basic principle of the domain; apply the studied concepts 	Written exam (in the regular session)	30%
10.5 Seminar/lab activities	 apply the studied concepts make experiments	Oral presentation / interaction	20%
	Researh report	Evaluation of the research report	50 %
			Other activities evaluated as bonus points
10.7 Minimum performance	ce standards		
At least grade 5 (fron	n a scale of 1 to 10) for the final	computed grade	

Date

Signature of course coordinator

Signature of seminar coordinator

Lect. Phd. Dana Lupsa

Lect. Phd. Dana Lupsa

Date of approval

Signature of the head of department

Assoc. prof. phd. Sterca Adrian