
SYLLABUS

1. Information regarding the programme
1.1 Higher education institution Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Master

1.6 Study programme / Qualification Inteligenta computationala aplicata

2. Information regarding the discipline
2.1 Name of the discipline Framework Design
2.2 Course coordinator Lect. dr. Ioan Lazar
2.3 Seminar coordinator Lect. dr. Ioan Lazar
2.4. Year of
study

2 2.5
Semester

2 2.6. Type of
evaluation

C 2.7 Type of
discipline

Mandatory

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 3 Of which: 3.2

course
2 3.3

seminar/laboratory
1

3.4 Total hours in the curriculum 36 Of which: 3.5
course

24 3.6
seminar/laboratory

12

Time allotment: hours
Learning using manual, course support, bibliography, course notes 8
Additional documentation (in libraries, on electronic platforms, field documentation) 7
Preparation for seminars/labs, homework, papers, portfolios and essays 8
Tutorship 2
Evaluations 8
Other activities:
3.7 Total individual study hours 33

3.8 Total hours per semester 75

3.9 Number of ECTS credits 8

4. Prerequisites (if necessary)
4.1. curriculum ● Programming Fundamentals
4.2. competencies ● Good programming skills in at least one of the languages Java,

C#

5. Conditions (if necessary)

6.

Specific competencies acquired

Prof
essio
nal
com
pete
ncies

● C 4.3 Identify models and methods adequate to real life problem solving

● C 2.1 Identify adequate software systems development methodologies

● C 1.1 Proper description of programming paradigms and language specific mechanisms,
and identification of semantical an syntactical differences

Tran
svers
al
com
pete
ncies

● CT1 Apply organized and efficient work rules and responsible attitude towards didactical and
research field, in order to creatively use work potential; respect professional ethical principles

● CT3 Use efficient methods and techniques for: learning, information search, research and
development of capacities to adapt to the requirements of a dynamic society and to
communicate in an international language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General
objective of the

discipline

Enhance the students understanding of service oriented concepts through a practical and

pragmatic approach

Provide the students with an environment in which they can explore the usage and

usefulness of service oriented concepts in various business scenarios

Induce a realistic and industry driven view of software design concepts such as design

patterns and their inherent benefits

7.2 Specific
objective of the
discipline

Give students the ability to explore various object oriented programming languages
Improve the students abilities to tackle business requirements
Enhance the students understanding of business needs and business value
Provide students with insights into the way of working towards achieving high quality
software through skilled trainers from the IT industry

8. Content
8.1 Course Teaching methods Remarks
1. Web frameworks for Node.js

PBD/Web Platforms
Web programming languages - JavaScript

- callback, generator, async functions

Exposure:
description,
explanation,
examples, discussion
of case studies

SE/Software Design

Web frameworks for node based on

- callback functions
- generator functions
- async functions
- reactive extensions (rxjs)
2. Functional reactive programming (FRP)

- pure functions, higher order functions
- recursion
- map, reduce, filter
- functional composition

Exposure:
description,
explanation,
examples, discussion
of case studies

3. Web frameworks based on FRP

3.1 HCI/Programming Interactive Systems

Functional reactive programming

- Cycle.js, https://cycle.js.org/

Exposure:
description,
explanation,
examples, discussion
of case studies

4. Web frameworks based on FRP

4.1 HCI/Programming Interactive Systems

Functional reactive programming
- Recycle.js, https://recycle.js.org/

Exposure:
description,
explanation,
examples, discussion
of case studies

5. Component based web frameworks

Components
- properties, lifecycle, state, and events
- composition vs inheritance
- Inferno.js, https://github.com/infernojs/inferno

Application state
- flux architecture

Exposure:
description,
explanation,
examples, discussion
of case studies

6. Component based web frameworks

Elements
- properties and behaviors
- composition
- Polymer, https://www.polymer-project.org

Application state
- elements without UI

Exposure:
description,
explanation,
examples, discussion
of case studies

7. Component based web frameworks Exposure:
description,

Components and modules
- properties and behaviors
- composition
- Angular 2, https://angular.io/

Application state
- services

explanation,
examples, discussion
of case studies

8. Creating a model-based framework for user
interfaces

IFML metamodel
- domain model
- services, actions
- components, containers

Exposure:
description,
explanation,
examples, discussion
of case studies

9. Creating an IFML diagram editor

- components, containers
- navigation flow

Exposure:
description,
explanation,
examples, discussion
of case studies

10. Creating a domain model diagram editor

- classes, properties, associations

Exposure:
description,
explanation,
examples, discussion
of case studies

11. Running and deploying components

- run component within the framework
- generate code and run components as standalone
apps

Exposure:
description,
explanation,
examples, discussion
of case studies

12. Component repository

- publish components
- reuse components

Exposure:
description,
explanation,
examples, discussion
of case studies

8.2 Seminar / laboratory Teaching methods Remarks
1. Creating a secured server for component

repositories
Dialogue, debate,
case studies,
examples, proofs

2. Creating a web app based on FRP frameworks Dialogue, debate,
case studies,
examples, proofs

3. Creating a web app based on web components Dialogue, debate,
case studies,
examples, proofs

4. Creating a model-based framework for user
interfaces

Dialogue, debate,
case studies,

examples, proofs
5. Add diagram editors Dialogue, debate,

case studies,
examples, proofs

6. Add component repository features Dialogue, debate,
case studies,
examples, proofs

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

● The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
● The course exists in the studying program of all major universities in Romania and abroad;
● The content of the course is considered the software companies as important for average

programming skills.

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)
10.4 Course - -
10.5 Seminar/lab
activities

Implement a system with
REST services, server side
notifications, and data
synchronization

Project grading 100%

10.6 Minimum performance standards

⮚ A minimum passing grade is defined by attaining at least 50% (5/10) points for the final project and

each of the three lab assignments respectively.

⮚ No more than 3 absences are allowed for the seminar/lab activities

Date Signature of course coordinator Signature of seminar coordinator

20.09.2 Lect. dr. Ioan Lazar Lect. dr. Ioan Lazar

Date of approval Signature of the head of department

Prof. dr. Anca Andreica

