SYLLABUS

0 0 1	
1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	Anthena memgenee

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the dis	f the discipline (en)			Fundamentals of Machine Learning			
(ro)							
2.2 Course coordina	ator						
2.3 Seminar coordinator							
2.4. Year of study 2	2	2.5 Semester	4	2.6. Type of	Ε	2.7 Type of	Compulsory
				evaluation		discipline	
2.8 Code of theMLE5228							•
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	2lab
-				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bit	liography, course note	es		25
Additional documentation (in libraries	, on	electronic platforms, f	eld do	cumentation)	29
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours 94					
3.8 Total hours per semester150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	•	Algorithms, data structures, statistics
4.2. competencies	•	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Projector	
5.2. for the seminar /lab	Compute	rs, specific development environment
activities		

6. Specific competencies acquired

Professional competencies	 CE1.1 Description of artificial intelligence concepts and research directions CE1.2 Evaluation of the quality and stability of the obtained solutions and their comparison with the solutions obtained by traditional methods CE1.3 Using artificial intelligence methods, techniques and algorithms to model solutions to classes of problems
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Emphasis the proper machine learning methods and techniques for solving real-world problems
7.2 Specific objective of the discipline	This course is aimed to advance both theoretical and practical aspects of Machine Learning. The course aims to provide an overview of the discipline and its main areas. At the end of the course, students will understand the basic principles of machine learning and associated algorithmic approaches and have knowledge of machine learning applications.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to Machine Learning	• Interactive	

2 Intelligent systems – Machine Learning (computational	exposure
2. intelligence)	• Dresentation
a Problem formalisation	• Fresentation
Regression problems	• Explanation
 Supervised classification problems 	• Practical
 Supervised classification problems Unsupervised classification problems 	examples
- Onsupervised loarning	• Case-study
 Supervised learning Derformance manufactures 	discussions
- Algorithms	
a. Least Mean Square Root b. Descent Credient	
D. Descent Gradient	
c. Logistic regression	
u. Artificial neural networks	
e. Convolutional Neural Networks	
1. K-nearest neighbour	
g. Decision trees	
n. Support vector Machines	
i. Dayesian models	
J. Evolutionary algorithms	
c. Unsupervised learning	
 Performance measures A la suithered 	
 Algorithms Deinforcement locaming 	
d. Reinforcement learning	
Performance measures	
 Algorithms 	
a. Q-learning	
b. Neural Networks	
3. Hybrid systems	
4. Real-world intelligent systems	
5. information processing that were collected in different	
domains (medical, biological, financial, psychology, etc)	
and represented in different modalities:	
a. Texts	
b. Images	
c. Sounds	
d. Networks / graphs	

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 4. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 5. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 6. James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995
- Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 – 27
- 8. H.F. Pop, G. Şerban, Inteligență artificială, Cluj Napoca, 2004
- 9. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 10. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 11. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016

https://www.deeplearningbook.org/		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Eficient solutions for algorithmic problems	 Interactive 	
2. Introduction to Machine Learning – performance	exposure	
measures	 Explanation 	
3. Regression problems – Least Mean Square Root	 Conversation 	
4. Data normalisation	 Didactical 	
5. Regression problems – descent gradient	demonstration	
6. Classification problems – logistic regression		
7. Regression problems – Artificial Neural Networks		
8. Classification problems – Artificial Neural Networks		
9. Regression problems – Evolutionary Algorithms		
10. Classification problems – Evolutionary Algorithms		
11. Clustering		
12. Real-world problems – ML-based solutions		
13. Development of applications that include intelligent		
components		

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
 A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, https://github.com/ageron/handson-ml

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of the basic	Written exam	50%
	concepts of the field		
	Applying the intelligent		
	principles from the		
	course content to solve		
	complex and difficult		
	problems		
10.5 Seminar/lab activities	· Specification, design,	Systematic observation of	50%
	implementation and	the student while solving	
	testing of intelligent	the task	
	methods	Practical projects	
	· Effective problem		

		solving with the help of previously implemented methods				
10.6	10.6 Minimum performance standards					
-	- Each student has to demonstrate that he has reached an acceptable level of knowledge and					
	understanding of the	field, that he is able to expr	ess the knowledge in a coheren	t form, that he has the		
	ability to establish co	ertain connections and to use	e the knowledge in solving som	e problems.		
-	- To pass the exam you must:					
-	at least 60% of the la	aboratory assignments are co	mpleted			
_	an evaluation averag	e (written exam, seminar, la	boratory) to be above 5			

Date

Signature of course coordinator Signature of seminar coordinator

Date of approval

Signature of the head of department

.....