SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of th	e di	iscipline	Sta	atistics				
2.2 Course coo	ordii	nator		Dr Oana-Andrea Lang				
2.3 Seminar co	ord	inator		Dr Oana-Andrea Lang				
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	DS Compulsory	
study		Semester		evaluation		discipline		
2.8 Course Code MLE5202								

3. Total estimated time (hours/semester of didactic activities)

		,			
3.1 Hours per week	5	Of which: 3.2 course	2	3.3	2 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					5
Tutorship					3
Evaluations					5
Other activities:					-
3.7 Total individual study hours		30			
3.8 Total hours per semester		100			

3.8 Total hours per semester	100
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Probability Theory	
	Mathematical Analysis	
4.2. competencies	Logical thinking	
	Average logical programming skills in Matlab	

5. Conditions (if necessary)

5.1. for the course	Lecture room with large blackboard and video projector
---------------------	--

5.2. for the seminar /lab	•	For seminar: room with large blackboard
activities	•	For lab: Laboratory with computers having Matlab installed

6. Specific competencies acquired

Professional competencies	C1.1 Identifying basic concepts, describing theory and using specific language C3.2 Interpretation of data and explaining the appropriate steps for solving problems by algorithms
Transversal competencies	CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various statistical models and procedures Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Review of Probability Theory. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties.	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Descriptive Statistics. Data collection. Graphical display of data. Frequency distribution and histograms. Parameters of a statistical distribution. Measures of central tendency. Measures of variation.	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Correlation and regression. Correlation coefficient. Least squares estimation. Linear regression. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Sample Theory. Samples. Sample functions: sample mean, sample variance, sample moments, sample distribution	Interactive exposureExplanationConversation	

function, sample proportions, sample functions for two populations. Properties.	Didactical demonstration
6. Statistical Inference. Estimation theory,	Interactive exposure
basic notions. Unbiased and minimum	Explanation
variance estimators. Standard error.	Conversation
Common unbiased estimators. Consistent	Didactical demonstration
estimators. Examples.	T / /
7. Properties of point estimators. Likelihood function. Fisher's information. Absolutely	Interactive exposure
correct estimators. Cramer-Raó Inequality.	ExplanationConversation
Efficiency and efficient estimators.	
-	Didactical demonstration
8. Sufficient statistics, Raó-Blackwell Theorem. Complete statistics, Lehmann-	• Interactive exposure
Scheffé Theorem. Examples.	• Explanation
Scherie Theorem. Examples.	Conversation
0 Matheda af active time The weathed of	Didactical demonstration
9. Methods of estimation. The method of moments estimator, the method of maximum	Interactive exposure
likelihood estimator. Examples.	• Explanation
inkennood estimator. Examples.	Conversation
	Didactical demonstration
10. Confidence intervals. Basic concepts,	• Interactive exposure
general framework. Confidence intervals for	• Explanation
estimating the population mean and the population variance. Confidence intervals	Conversation
for proportions. Selecting the sample size.	Didactical demonstration
Examples.	
11. Confidence intervals for comparing two	Interactive exposure
population means and two population	Explanation
variances. Confidence intervals for	Conversation
comparing proportions. Examples.	Didactical demonstration
12. Hypothesis testing. Basic concepts, general	Interactive exposure
framework. Rejection region. Type I errors.	Explanation
Significance testing and P-values. The Z-test	Conversation
for the mean. Selecting the sample size.	Didactical demonstration
Examples.	
13. The T (Student)-test for the mean. Tests for	• Interactive exposure
proportions. The Chi-square-test for the	Explanation
variance. The F-test for the ratio of	Conversation
variances. Tests for the difference of means.	Didactical demonstration
Paired data tests. Examples.	
14. Type II errors and the power of a test. Most	• Interactive exposure
powerful tests and the Neyman-Pearson	• Explanation
lemma. Uniformly most powerful tests. Examples. Overview of statistical	Conversation
procedures.	Didactical demonstration
Bibliography	
	outational Sciences, Cluj University Press, 2009.
1. Theata, S., 1 roouonity and Statistics for Com	

- Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 4. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 5. Feller, W., An introduction to probability theory and its applications, Vol. 1, 3rd edition, WSE Wiley, New York, 2008.

6. DeGroot, M. H., Schervish, M. J., Probability	and Statistics, Addison-Wesley, B	oston, 2012.
8.2 Seminar	Teaching methods	Remarks
1. Euler's Functions. Properties. Computation	Interactive exposure	
of moments of continuous random variables.	Explanation	
	Conversation	
2. Rules of probability, random variables.	Interactive exposure	
Applications.	Explanation	
	Conversation	
	Individual/group work	
3. Descriptive Statistics. Measures of central	Interactive exposure	
tendency and measures of variation.	Explanation	
	Conversation	
	Individual/group work	
4. Correlation and regression. Correlation	Interactive exposure	
coefficient, lines of regression.	Explanation	
	Conversation	
	Individual/group work	
5. Sample functions. Properties.	Interactive exposure	
	Explanation	
	Conversation	
	Individual/group work	
6. Unbiased, consistent and minimum variance	Interactive exposure	
estimators.	Explanation	
	Conversation	
	Individual/group work	
7. Fisher's information. Absolutely correct and	Interactive exposure	
efficient estimators.	Conversation	
	• Synthesis	
	Individual/group work	
8. Sufficient and complete statistics. Lehmann-	Interactive exposure	
Scheffé Theorem. Minimum variance	Explanation	
unbiased estimators.	Conversation	
	Individual/group work	
9. Method of moments.	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
	Individual/group work	
10. Method of maximum likelihood.	Interactive exposure	
	Explanation	
	Conversation	
	Individual/group work	
11. Confidence intervals for the mean, the	Interactive exposure	
variance and proportions. Selecting the	Explanation	
sample size.	Conversation	
	Individual/group work	
12. Confidence intervals for comparing the	Interactive exposure	
parameters of two populations.	Explanation	
	Conversation	
	Individual/group work	

8.3 Laboratory Teaching methods Remarks 1. Review of Matlab features. Statistics and machine learning toolbox. Interactive exposure The lab is structured as 2 2. Random number generators. Simulations of random variables. Samples, statistical measures. Interactive exposure The lab is structured as 2 3. Descriptive Statistics. Histograms, frequency polygons, boxplots. Interactive exposure Explanation 4. Correlation and regression. Best fit of data. Interactive exposure Explanation 5. Confidence intervals for means, variances and proportions. Interactive exposure Synthesis 6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population. Interactive exposure Explanation 7. Hypothesis and significance testing for comparing two populations and for paired data. Interactive exposure Explanation	 13. Hypothesis and significance testing for the mean, the variance and proportions. Selecting the sample size. 14. Hypothesis and significance testing for comparing the parameters of two populations. Most powerful tests. 	 Interactive exposure Explanation Conversation Individual/group work Interactive exposure Explanation Conversation Individual/group work 	
machine learning toolbox.Explanationstructured as 2 hours per week, every other week2. Random number generators. Simulations of random variables. Samples, statistical measures.Interactive exposure Explanation Explanation Econversation Individual/group workstructured as 2 hours per week, every other week3. Descriptive Statistics. Histograms, frequency polygons, boxplots.Interactive exposure Explanation Conversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Explanation Econversation Endividual/group work4. Correlation and regression. Best fit of data.Interactive exposure Synthesis Conversation Individual/group work5. Confidence intervals for means, variances and proportions.Interactive exposure Explanation Explanation Explanation Explanation Explanation Explanation Explanation6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population.Interactive exposure Explanation Explanation Explanation Explanation7. Hypothesis and significance testing for comparing two populations and for pairedInteractive exposure Explanation			
random variables. Samples, statistical measures.Explanation Conversation Individual/group work3. Descriptive Statistics. Histograms, frequency polygons, boxplots.Interactive exposure Explanation Conversation Individual/group work4. Correlation and regression. Best fit of data.Interactive exposure Synthesis Conversation Individual/group work5. Confidence intervals for means, variances and proportions.Interactive exposure Synthesis Conversation Individual/group work6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population.Interactive exposure Explanation Conversation Individual/group work7. Hypothesis and significance testing for comparing two populations and for pairedInteractive exposure Explanation		ExplanationConversation	structured as 2 hours per week, every
3. Descriptive Statistics. Histograms, frequency polygons, boxplots. Interactive exposure Explanation Conversation Individual/group work 4. Correlation and regression. Best fit of data. Interactive exposure Synthesis Conversation Individual/group work 5. Confidence intervals for means, variances and proportions. Interactive exposure Explanation Individual/group work 6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population. Interactive exposure 9. Explanation Conversation Individual/group work 6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population. Conversation Individual/group work 7. Hypothesis and significance testing for comparing two populations and for paired Interactive exposure Explanation Explanation Individual/group work Individual/group work	random variables. Samples, statistical	ExplanationConversation	
4. Correlation and regression. Best fit of data.• Interactive exposure4. Correlation and regression. Best fit of data.• Interactive exposure• Synthesis• Conversation• Individual/group work• Interactive exposure• Source and proportions.• Interactive exposure• Confidence intervals for means, variances and proportions.• Interactive exposure• Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population.• Interactive exposure• Conversation• Interactive exposure• Explanation• Interactive exposure• Individual/group work• Interactive exposure• Explanation• Conversation• Individual/group work• Interactive exposure• Explanation• Individual/group work• Hypothesis and significance testing for comparing two populations and for paired• Interactive exposure• Explanation• Interactive exposure		Interactive exposureExplanationConversation	
5. Confidence intervals for means, variances and proportions.• Interactive exposure Explanation • Explanation6. Confidence intervals for comparing two populations. Hypothesis and significance testing for the parameters of one population.• Interactive exposure • Interactive exposure 	4. Correlation and regression. Best fit of data.	SynthesisConversation	
 populations. Hypothesis and significance testing for the parameters of one population. T. Hypothesis and significance testing for comparing two populations and for paired Explanation Explanation Individual/group work Interactive exposure Explanation 		Interactive exposureExplanationConversation	
comparing two populations and for paired • Explanation	populations. Hypothesis and significance	Interactive exposureExplanationConversation	
Individual/group work	comparing two populations and for paired	Interactive exposureExplanationConversation	

Bibliography

1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.

2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.

- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Mathematics and Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 acquire the basic principles in Mathematical Statistics; be able to apply correctly the course concepts on various applications 	Written exam Coursework	80% 20%	
10.5 Seminar/Lab activities	 apply course concepts and techniques on practical problems choose and apply the appropriate statistical procedure to various practical problems 	 participation in discussing and solving problems in seminar and lab throughout the semester individual presentation of solutions 	Extra 10% possible	
 10.7 Minimum performance standards ➤ A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the activities mentioned above (written test, seminar/lab evaluation) 				

Date

Signature of course coordinator

Signature of seminar coordinator

26.04.2024

0 Lang

0 Lang

Date of approval

Signature of the head of department

.....

.....