
Syllabus

1. Information regarding the programme
1.1 Higher education
institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Informatics

1.5 Study cycle Bachelor

1.6 Study programme /
Qualification

Artificial Intelligence

2. Information regarding the discipline
2.1 Name of the discipline (en)
(ro)

Object Oriented Programming
Programare orientată obiect

2.2 Course coordinator Lect. PhD Diana Laura Borza
2.3 Seminar coordinator Lect. PhD Diana Laura Borza
2.4. Year of study 1 2.5

Semester
2 2.6. Type of

evaluation
E 2.7 Type of

discipline
Compulsory

2.8 Code of the
discipline

MLE5006

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 5 Of which: 3.2 course 2 3.3

seminar/laboratory
1 sem
2 lab

3.4 Total hours in the curriculum 70 Of which: 3.5 course 28 3.6
seminar/laboratory

42

Time allotment: hours
Learning using manual, course support, bibliography, course notes 15
Additional documentation (in libraries, on electronic platforms, field documentation) 10
Preparation for seminars/labs, homework, papers, portfolios and essays 15
Tutorship 4
Evaluations 11
Other activities:
3.7 Total individual study hours 55
3.8 Total hours per semester 125
3.9 Number of ECTS credits 5

4. Prerequisites (if necessary)
4.1. curriculum ● Fundamentals of programming
4.2. competencies ● Average programming skills in a high-level programming

language

5. Conditions (if necessary)
5.1. for the course ● Class room with projector
5.2. for the seminar /lab
activities

● Laboratory with computers, having a C++ compiler, a C++ IDE
(preferably Visual Studio) and Qt library installed

6. Specific competencies acquired
Prof
essio
nal
com
pete
ncies

● C3.1 Identifying classes of problems and solving methods that are specific to computing
systems

● C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments
and interpreting their results

● C3.3 Applying solution patterns using specific engineering tools and methods
● C3.4 Comparative and experimental evaluation of the alternative solutions for

performance optimization
● C3.5 Developing and implementing information system solutions for concrete problems

Tran
svers
al
com
pete
ncies

● CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the
professional reputation

● CT3 Demonstrating initiative and proactive behavior for updating professional,
economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)
7.1 General objective of the
discipline

● To understand the concepts of the object-oriented programming
paradigm and to design object-oriented solutions of small/medium
scale problems, using C++ and Qt.

7.2 Specific objective of the
discipline

● To demonstrate the differences between traditional imperative design
and object-oriented design.

● To explain class structures as fundamental, modular building blocks.
● To understand the role of inheritance, polymorphism, dynamic binding

and generic structures in building reusable code.
● To explain and to use defensive programming strategies, employing

formal assertions and exception handling.
● To design user- interfaces and write small/medium scale C++

programs using Qt.
● To use classes written by other programmers and third-party libraries

when constructing their systems.

8. Content
8.1 Course Teaching methods Remarks

1. C/C++ introduction (basic elements of
C/C++ programming language, data types,
constants, variables, scope and lifetime of the
variables, statements, functions: declaration
and definition, overloading functions).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration

2. Modular programming in C/C++
(functions, formal and actual parameters,
pointers and memory management, the stack
and the help, pointers to functions, header
files, modular programming, libraries).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
3. Object oriented programming in C++

(introduction to object oriented programming,
object oriented programming features,
abstraction, encapsulation, classes and
objects, access modifiers, object creation and
destruction, operator overloading, static and
friend elements).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration

4. Inheritance and polymorphism (base and
derived classes, Liskov substitution principle,
method overriding, inheritance and
polymorphism).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
5. Polymorphism (static and dynamic binding,

virtual methods, multiple inheritance,
upcasting and downcasting, abstract classes,
UML class diagrams and relations).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
6. Templates in C++. The C++ Standard

Template Library (function templates, class
templates, containers in STL: array, vector,
list, stack, heap, map, set), iterators, STL
algorithms, lambda functions.

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
7. Streams and exception handling (input

output streams, insertion and extraction
operators, overloading insertion and
extraction operators, formatting,
manipulators, flags, text files, exception
handling, exception safe code).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
8. Resource management and RAII (Resource

Acquisition Is Initialization (RAII), smart
pointers, move semantics, smart pointers in
STL: std::unique_ptr, std::shared_ptr,
std::weak_ptr)

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
9. Graphical User Interfaces (Qt Toolkit:

installation, Qt modules and instruments, Qt
GUI components, Layout management,
design interfaces using Qt Designer).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
10. Event driven programming I (callbacks,

events, signals and slots in Qt).
● Interactive exposure
● Explanation
● Conversation
● Examples

● Didactical
demonstration

11. Event driven programming II (Model View
Controller, Models and Views in Qt, using
predefined models, implementing custom
models).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
12. Design patterns I (creational, structural,

behavioral patterns, examples, singleton,
factory method, adapter pattern).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
13. Design patterns II (façade pattern, observer

pattern, strategy pattern, case study
application and examples).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
14. Revision (revision of the most important

topics covered by the course, examination
guide).

● Interactive exposure
● Explanation
● Conversation
● Examples
● Didactical

demonstration
Bibliography
1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.
2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.
3. A. Alexandrescu. Programarea moderna in C++: Programare generica si modele de proiectare
aplicate, Editura Teora, 2002.
4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley, 2005.
5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley,
1995.
6. B. Stroustrup. A Tour of C++, Addison-Wesley, 2013.
7. C++ reference (http://en.cppreference.com/w/).
8. Qt Documentation (http://doc.qt.io/qt-5/).
9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Longman Publishing, 1995.
8.2 Seminar Teaching methods Remarks

1. Simple problems in C. Functions. Structures,
enums and arrays.

● Interactive exposure
● Explanation
● Conversation

The seminar is
structured as a 2 hour
class, every 2 weeks.

2. Modular programming. ● Interactive exposure
● Explanation
● Conversation

3. Classes. Operator overloading. User-defined
objects as class data members.

● Interactive exposure
● Explanation
● Conversation

4. Inheritance. Polymorphism. Templates. ● Interactive exposure
● Explanation

● Conversation
5. Files, exceptions. STL containers, iterators,

algorithms.
● Interactive exposure
● Explanation
● Conversation

6. Graphical User Interfaces. ● Interactive exposure
● Explanation
● Conversation

7. Implementation based on UML diagrams.
Design patterns.

● Interactive exposure
● Explanation
● Conversation

Bibliography
1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.
2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.
3. A. Alexandrescu. Programarea moderna in C++: Programare generica si modele de proiectare
aplicate, Editura Teora, 2002.
4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley, 2005.
5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley,
1995.
6. B. Stroustrup. A Tour of C++, Addison-Wesley, 2013.
7. C++ reference (http://en.cppreference.com/w/).
8. Qt Documentation (http://doc.qt.io/qt-5/).
9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Longman Publishing, 1995.

8.3 Laboratory Teaching methods Remarks
1. Environment setup (installing a C++ compiler

and an IDE). C/C++ basics.
● Explanation
● Conversation

The laboratory is
structured as weekly 2
hour classes.

2. Introductory problems (in C). ● Explanation
● Conversation

3. Feature-driven software development
process. Layered architecture. Test driven
development. Modular programming

● Explanation
● Conversation

4. Classes and objects in C++. Copy
constructors, assignment operators,
destructors.

● Explanation
● Conversation

5. Inheritance. Method overriding. ● Explanation
● Conversation

6. Inheritance and polymorphism. Virtual
methods.

● Explanation
● Conversation

7. Laboratory test. Practical test
8. STL containers, iterators and algorithms. ● Explanation

● Conversation
9. Streams, overloading the insertion and

extraction operators, persistence.
● Explanation
● Conversation

10. Exception handling. Testing. ● Explanation
● Conversation

11. Qt Graphical User Interfaces I. ● Explanation
● Conversation

12. Qt Graphical User Interfaces II. Signals and
slots in Qt.

● Explanation
● Conversation

13. Design patterns. ● Explanation
● Conversation

14. Laboratory test. Practical test
Bibliography
1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.
2. R. Gilberg. C++ Programming: An Object-Oriented Approach, McGraw-Hill Education, 2019
3. A. Alexandrescu. Programarea moderna in C++: Programare generica si modele de proiectare
aplicate, Editura Teora, 2002.
4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),
Addison-Wesley, 2005.
6. B. Stroustrup. A Tour of C++, Addison-Wesley, 2013.
7. C++ reference (http://en.cppreference.com/w/).
8. Qt Documentation (http://doc.qt.io/qt-5/).
9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Longman Publishing, 1995.
10. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

● The course respects the ACM Curricula Recommendations for Computer Science studies.
● The course exists in the studying program of all major universities in Romania and abroad.
● The content of the course is considered by the software companies as important for average

object-oriented programming skills.

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)
10.4 Course The correctness and

completeness of the
accumulated knowledge
and the capacity to design
and implement correct
C++ programs.

Written examination
(regular session).

60%

10.5 Seminar/lab activities Ability to design,
implement, test and debug

Practical evaluation. Two
tests during the semester.

20%

a C++ program with a
graphical user interface.
Project. Design, implementation and

testing of a small-medium
application that uses a 3-tier
architecture. Documentation

20%

10.6 Minimum performance standards
� Students must prove that they acquired an acceptable level of knowledge and understanding of the core

concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have
the ability to establish certain connections and to use the knowledge in solving small/medium scale problems
using object-oriented programming in C++.

� Successfully passing the examination is conditioned by a minimum grade of 5 (no rounding) for the laboratory
practical test, the laboratory assignment and written examination.

� Attendance is mandatory for 5 seminar sessions and 12 laboratory sessions.

Date Signature of course coordinator Signature of seminar coordinator

02.10.2024 Lect. PhD. Diana Laura Borza Lect. PhD. Diana Laura Borza

Date of approval Signature of the head of department

...…............................

