SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	High Performance Computing and Big Data
	Analytics

2. Information regarding the discipline

2.1 Name of th	e dis	e discipline Internship in Specialization					
2.2 Course coordinator		Assoc. Prof. Dr. Virginia Niculescu					
2.3 Seminar co	ordi	nator	Assoc. Prof. Dr. Virginia Niculescu				
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	Compulsory		
2.8 Discipline Code	M	ME9012	•				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	16	Of which: 3.2 course	0	3.3 seminar/laboratory	16
3.4 Total hours in the curriculum	192	Of which: 3.5 course	0	3.6 seminar/laboratory	192
				·	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					76
Additional documentation (in libraries, on electronic platforms, field documentation)					76
Preparation for seminars/labs, homework, papers, portfolios and essays					60
Tutorship					76
Evaluations				20	
Other activities:					

3.7 Total individual study hours	308
3.8 Total hours per semester	500
3.9 Number of ECTS credits	20

4. Prerequisites (if necessary)

4.1. curriculum	Computer Science Curriculum	
4.2. competencies	Theoretical and experimental knowledge in the master specialization	
	Knowledge of modelling of relevant applications	
	Advanced software development knowledge and skills	

5. Conditions (if necessary)

5.1. for the course		
5.2. for the seminar /lab	The hosting institutions should provide at least the following	
activities	resources:	
	 Scientific references for the scientific problem to be investigated 	
	• Relevant data to help in the validation of any software implementation	
	Fully licensed computer space	
	Fully licensed software development tools	

6. Specific competencies acquired

Professional competencies	C2.1 Identification of appropriate methodologies for software development C2.3 Use of methodologies, specification mechanism and development frameworks for developing software applications C2.5 Development of dedicated software projects
Transversal competencies	CT1 Apply rules to: organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
	CT2 Efficient progress of group activities and development of communications skills and collaboration CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

	(· · · · · · · · · · · · · · · · · · ·
7.1 General objective of the	Gaining abilities to execute a product/program in teams, writing project
discipline	documentation, under the supervision of a specialized internship tutor and
	academic staff
	This internship project is associated to the research project: the research project is
	the scientific and experimental documentation, the internship activity is software
	development related
7.2 Specific objective of the	Execute a product/program in teamwork
discipline	Write necessary documentations
	Public project presentation

8. Content

8.1 Course	Teaching methods	Remarks
8.2 Seminar / laboratory	Teaching methods	Remarks
Phase 1. Establish the problem statement to be solved. Study the theoretical implications.	Exposure, description, explanation,	
Phase 2. Establish the scientific methods and models to pursue Scientific investigation on the methods and models and their suitability for the task	Dialog lecture, discussions, team debate	
Phase 3. Develop detailed specifications of the project Project analysis: entities and relations identification, use scenarios, data flow diagrams	Dialog lecture, discussions, team debate	
Phase 4. Design: conceptual data model, logical data model, computation design, physical data model, user interface, application architecture Implementation and testing.	Questioning, discovery	
Phase 5. Integration Testing Experiments, data collection, results evaluation	Case study, cooperation, questioning	
Phase 6. Project presentation and defense	Evaluation	

Bibliography

- 1. M. Frențiu, I. Lazăr, Bazele Programării: Proiectarea Algoritmilor, Ed. Univ. Petru Maior, Tg.Mureș, 2000.
- 2. M. Frențiu, I. Lazăr, S. Motogna, V. Prejmerean, Elaborarea algoritmilor, Ed. Presa Universitara, Clujeana, Cluj-Napoca, 1998.
- 3. M. Frențiu, I.A. Rus, Metodologia cercetării științifice de informatică, Presa universitară clujeană, 2014.
- 4. B. Pârv, Analiza si proiectarea sistemelor, Universitatea Babes-Bolyai, Centrul de Formare Continua si Învatamânt la Distanta, Facultatea de Matematica si Informatica, Cluj-Napoca, ed. a III-a, 2003.
- 5. L. Țâmbulea, Baze de date, Litografia UBB Cluj-Napoca 2001.
- 6. Electronic resources for the specific investigated research subject

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- Offers an overall perspective of Computer Science domain, and an general expertise for the student
- Offers basic knowledge about teamwork and integration in a software company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course			
10.5 Seminar/lab activities	Project evaluation	The institution tutor assesses the performance of the interns.	80%
		The faculty mentor assesses the activities (based on Activity Report)	20%
		1.00000	
10.6 Minimum performance standards			
At least grade 5 (from a scale of 1 to 10)			

Date	Signature of course coordinator	Signature of seminar coordinator
		Assoc. Prof. Dr. Virginia Niculescu
Date of appr	roval	Signature of the head of department
		Assoc. prof. dr. Sterca Adrian