SYLLABUS ## 1. Information regarding the programme | 1.1 Higher education | Babeş-Bolyai University | |-----------------------|---| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computer Science | | 1.5 Study cycle | Master | | 1.6 Study programme / | High Performance Computing and Big Data Analysis (Calcul de | | Qualification | înaltă performanță și analiza volumelor mari de date) | ## 2. Information regarding the discipline | 2.1 Name of the discipline Statistical Computational Methods | | | | | | | | |--|-----|----------|---------------------------------|--------------------|--------|-------------|-------------| | 2.2 Course coordinator | | | Prof. Sanda Micula, PhD. Habil. | | | | | | 2.3 Seminar coo | rdi | nator | | Prof. Sanda Micula | , PhD. | Habil. | | | 2.4. Year of | 2 | 2.5 | 3 | 2.6. Type of | E | 2.7 Type of | DS Optional | | study | | Semester | | evaluation | | discipline | | | 2.8 Course Code MME8088 | | | | | | | | ## 3. Total estimated time (hours/semester of didactic activities) | 3.1 Hours per week | 4 | Of which: 3.2 course | 2 | 3.3 | 1S + 1P | |---|----|----------------------|----|--------------------|---------| | | | | | seminar/laboratory | | | 3.4 Total hours in the curriculum | 56 | Of which: 3.5 course | 28 | 3.6 | 28 | | | | | | seminar/laboratory | | | Time allotment: | | | | | hours | | Learning using manual, course support, bibliography, course notes | | | | | 35 | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | 15 | | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | 32 | | | Tutorship | | | | 14 | | | Evaluations | | | | 23 | | | Other activities: | | | | - | | | 3.7 Total individual study hours | 119 | |----------------------------------|-----| | 3.8 Total hours per semester | 175 | | 3.9 Number of ECTS credits | 7 | ## **4. Prerequisites** (if necessary) | 4.1. curriculum | Probability and Statistics | |-------------------|--| | 4.2. competencies | Logical thinking | | | Average logical programming skills | ## **5. Conditions** (if necessary) | 5.1. for the course | Lecture room with large blackboard and video projector, laptop,
beamer | |---------------------------|---| | 5.2. for the seminar /lab | • For seminar: Laboratory with computers having Matlab installed | 6. Specific competencies acquired | Professional competencies | C4.3 Identifying the appropriate models and methods for solving real-life problems C4.4 Using simulations in order to study and elaborate models and evaluate their performance | |---------------------------------|---| | | CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic | | Transversal competencies | CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language | ## 7. Objectives of the discipline (outcome of the acquired competencies) | 7.1 General objective of the discipline | Acquire basic knowledge of Probability Theory and Mathematical
Statistics applications and models | |--|---| | 7.2 Specific objective of the discipline | Ability to use Monte Carlo methods and simulations for solving real-life problems and perform statistical analysis of data Become familiar and be able to work with various probabilistic and statistical models Ability to use statistical features of various mathematical software | ## 8. Content | 8.1 Course | Teaching methods | Remarks | |---|---|---------| | 1. Review of Probability and Statistics. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. | Interactive exposure Explanation Conversation Didactical demonstration | | | Common discrete and continuous
distributions. PDF and CDF. Examples,
applications, properties. | Interactive exposure Explanation Conversation Didactical demonstration | | | 3. Random samples. Sample functions. Estimators. Confidence intervals. Hypothesis and significance testing. | Interactive exposureExplanationConversation | | | 4. Computer simulations and Monte Carlo methods. MC methods and random number generators. Discrete methods. Examples. | Interactive exposure Explanation Conversation Description | | | 5. Inverse transform and discrete inverse transform method. Rejection method. Special methods. Examples. | Interactive exposure Explanation Conversation Didactical demonstration | | | Accuracy of an MC study. Estimating probabilities, means, variances. Size of an MC study. Other applications of MC methods. Stochastic processes. Definitions, classifications. Markov processes and Markov chains. Transition probability matrix. Properties, examples. | Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Description | |---|---| | 8. Steady-state distribution. Regular Markov chains. Periodic Markov chains. Simulation of Markov chains. | Interactive exposure Explanation Conversation Didactical demonstration | | 9. Counting processes. Binomial and Poisson counting processes. Gamma-Poisson formula. Simulation of counting processes. Examples. | Interactive exposure Explanation Conversation Didactical demonstration | | 10. Queuing systems . Basic notions, main components, Little's law. Bernoulli singleserver QS. Systems with limited capacity. | Interactive exposureExplanationConversation | | 11. M/M/1 QS. Evaluation of a system's performance. Examples. | Interactive exposure Explanation Conversation Didactical demonstration | | 12. Multiserver QS's. Bernoulli k-server and M/M/k QS's. M/M/∞ QS's. Simulation of QS's. | Interactive exposureExplanationConversation | | 13. Statistical inference . Nonparametric tests, Chi-square-tests, Wilcoxon tests. Bootstrapping. Applications, examples, simulations. | Interactive exposure Explanation Conversation Description | | 14. Regression and correlation. Fitting models. Analysis of variance (ANOVA), prediction. Examples. | Interactive exposure Explanation Conversation Didactical demonstration | ## Bibliography - 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009. - 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019. - 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995. - 4. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002. - 5. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009. - 6. Gentle, J. E., Hardle, W., Mori, Y., Handbook of Computational Statistics, Springer, Heidelberg, 2004. | 8.2 Seminar /Laboratory | Teaching methods | Remarks | |--|---|---| | 1. Random variables and applications. | Interactive exposureExplanationConversation | The seminar is structured as 2 hours per week, every other week | | Computer simulations of discrete random variables. Discrete methods. | Interactive exposureExplanation | | | 3. Computer simulations of random variables and Monte Carlo studies. Inverse transform method, rejection method, special methods. | Conversation Individual and group work Interactive exposure Conversation Synthesis Individual and group | |---|--| | 4. Markov chains. Applications and simulations. | work Interactive exposure Explanation Conversation Individual and group work | | 5. Counting processes. Bernoulli and Poisson counting processes. Applications and simulations. | Interactive exposure Explanation Conversation Individual and group work | | 6. Queuing systems. Examples and simulations. | Interactive exposure Explanation Conversation Individual and group work | | 7. Statistical inference. Applications and simulations. Lab test. | Interactive exposure Explanation Conversation Description Individual and group work | #### Bibliography - 1. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019. - 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002. - 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006. - 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995. - 5. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002. - 6. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009. # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - The course gives students solid statistical background for computational intelligence. - The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research. - The statistical analysis abilities acquired in this course are useful in any career path students may choose. | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Share in the grade (%) | |-----------------------------|---|---|-----------------------------| | 10.4 Course | - acquire the basic principles in Computational Statistics, with emphasis on simulations and Monte Carlo studies; - be able to apply correctly the course concepts on various applications and problem solving | Written exam | 70% | | 10.5 Seminar/Lab activities | be able to apply course concepts and techniques on practical problems be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab | - participation in discussing, solving and implementing problems throughout the semester - individual presentation of solutions - lab test (numerical statistical applications and simulations) | 30% | ## 10.7 Minimum performance standards A grade of 5 or above (on a scale from 1 to 10) on **each** activity mentioned above (written test, seminar/lab evaluation) Date Signature of course coordinator Signature of seminar coordinator 23.04.2024 Prof. Sanda Micula, PhD. Habil. Prof. Sanda Micula, PhD. Habil. Date of approval Signature of t Signature of the head of department Prof. dr. Andrei Mărcuș