SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeș-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	High Performance Computing and Big Data Analytics			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline C				Operating Systems for Parallel and Distributed				
Architectures								
2.2 Course coor	2.2 Course coordinator Assoc. Prof. Darius Bufnea							
2.3 Seminar coordinator				Assoc. Prof. Darius Bufnea				
2.4. Year of	1	2.5	1	2.6. Type ofE2.7 Type ofcompulsory				
study		Semester		evaluation		discipline		
2.8. Code of the discipline	Μ	ME8093						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					12
Evaluations					7
Other activities:					-
3.7 Total individual study hours 94					
3.8 Total hours per semester		150			
3.9 Number of ECTS credits		6			

4. Prerequisites (if necessary)

4.1. curriculum	Operating Systems		
	Distributed Operating Systems		
	Computer Networks		
4.2. competencies • Average administration and programming skills			

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar/lab	Computers, Linux computers and Linux virtual machines for building
activities	a cluster, Network infrastructure

6. Specific competencies acquired

or speen	te competencies acquired
	Capability of analysis and synthesis;
ies	• Understanding and working with basic concepts of data analysis and modelling;
enc	• Modelling and solving real-life problems;
ıpet	• Assimilation of mathematical concepts and formal models to understand the methods and
Com	components of high performance systems;
Professional competencies	• Capability of developing of high performance programs based on parallel and distributed
ion	programming;
fess	• Analysis, design, and implementation of data analysis systems;
Pro	• Understanding and acquisition of methods of modelling, optimization, analysis of massive
	datasets, data visualization.
	Ethic and fair behaviour, commitment to professional deontology
al	• Teamwork capabilities; able to fulfil different roles
ers	• Professional communication skills; concise and precise description, both oral and written,
nsv	of professional results, negotiation abilities;
Transversal competencies	• Entrepreneurial skills; working with economical knowledge; continuous learning

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Know the key concepts of parallel cluster architectures
7.2 Specific objective of the discipline	At the end of the course, students will know how to build deploy configure maintain
	 monitor debug a Linux parallel cluster

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Operating systems for parallel	Exposure,	
architectures	description,	
	explanation, debate	
	and dialogue,	
	discussion of case	

	studies
2. Parallel Cluster architecture: Cluster Head Nodes,	Exposure,
Computer Nodes, Clustering Middleware	description,
Computer Nodes, Clustering Middleware	explanation, case
	studies
3-4. Parallel Cluster Paradigms: Single system image,	Exposure,
Centralized system management, High processing capacity,	description,
Resource consolidation, Optimal use of resources, High-	explanation, debate
availability, Redundancy, Single points of failure, Failover	and dialogue,
protection and Disaster recovery, Horizontal and vertical	discussion of case
scalability, Load-balancing, Elasticity, Run Jobs Anytime,	studies
Anywhere	
5. Design and configuration. Network prerequisites for a	Exposure,
parallel cluster: LAN, bandwidth, latency, interface,	description,
security aspects. Nodes automatic configuration and	explanation, case
deployment	studies
6. Virtualization of hardware, operating system, storage	Exposure,
devices, computer network resources	description,
devices, computer network resources	explanation, case
	studies
7-8. Beowulf clusters deployment and administrations	Exposure,
7-0. Detwein erusters deproyment and administrations	description,
	explanation, debate
	and dialogue,
	discussion of case
	studies
9. Linux Cluster Distributions: Mosix, ClusterKnoppix.	Exposure,
Automated operating systems and software provisioning for	description,
a Linux Cluster: Open Source Cluster Application	explanation, case
Resources (OSCAR)	studies
10. Cluster resources: distributed memory architecture and	Exposure,
distributed shared memory, distributed file systems	description,
(examples: IBM General Parallel File System, Microsoft's	explanation, debate
Cluster Shared Volumes, Oracle Cluster File System	and dialogue,
······································	discussion of case
	studies
11. Nodes and head node management, Cluster system	Exposure,
management, Debugging and monitoring a parallel cluster,	description,
Node failure management	explanation, case
	studies
12. Data sharing and communication, Message passing and	Exposure,
communication, Parallel processing libraries: Parallel	description,
Virtual Machine toolkit and the Message Passing Interface	explanation, case
library	studies
12.0.0 11.1	
13. Software and development environment, Parallel	Exposure,
application development and execution (Parallel	description,
Environment – PE), Job scheduling & management	explanation, case
	studies

14. Final review	Exposure,
	description,
	explanation, case
	studies

Bibliography

1. Gregory Pfister: In Search of Clusters, Prentice Hall; 2 edition (December 22, 1997), ISBN-10: 0138997098, ISBN-13:978-0138997090

2. George F. Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts and Design, Addison-Wesley; 5 edition (May 7, 2011), ISBN-10: 0132143011, ISBN-13: 978-0132143011

3. Joseph D. Sloan: High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI, O'Reilly Media (November 23, 2004), ISBN-10: 0596005709, ISBN-13: 978-0596005702

4. Daniel F. Savarese, Donald J. Becker, John Salmon, Thomas Sterling: How to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters, The MIT Press (May 28, 1999), ISBN-10: 026269218X, ISBN-13: 978-0262692182

5. Gordon Bell, Thomas Sterling: Beowulf Cluster Computing with Linux, The MIT Press; 1 edition (October 1, 2001), ISBN-10: 0262692740, ISBN-13: 978-0262692748

6. Charles Bookman: Linux Clustering: Building and Maintaining Linux Clusters, Sams Publishing; 1 edition (June 29, 2002), ISBN-10: 1578702747, ISBN-13: 978-1578702749

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Project presentation	Conversation, debate, case studies	The Seminar/lab is organized as a total of 7 classes - 2 hours every other week
2. Cluster requirements	Conversation, debate, case studies	
3. Cluster building and deployment	Conversation, debate, case studies	
4. Cluster configuration	Conversation, debate, case studies	
5. Cluster maintenance	Conversation, debate, case studies	
6. Cluster debugging and monitoring	Conversation, debate, case studies	
7. Final evaluation of seminar/lab activities	Conversation, debate	
Bibliography		

bionography

Students, organized in teams of 4 or 5 members will have to build, deploy, configure, maintain, monitor and debug a Linux parallel cluster. The key concepts to accomplish these goals are presented during the course hours and are also available in the course' bibliography (see above).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

Courses with similar content are taught for graduate students in major universities around the world, •

including: Princeton, Berkeley, MIT.

• Course content is considered very important in the actual context of the increased need of computing power for computational science, interdisciplinary applications, and commercial applications as well, coupled with the high cost and low accessibility of traditional supercomputers.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	- know the key concepts of parallel cluster architectures;	Written exam	30%		
10.5 Seminar/lab activities	- know how to deploy, maintain, debug and	Presentation on a HPC related topic	30%		
	monitor a parallel cluster	Homework assignments	30%		
		Default	10%		
10.6 Minimum performance standards					
• At least grade 5 (from a scale of 1 to 10) at written exam and seminar/lab activities.					

Date

Signature of course coordinator

Signature of seminar coordinator

Assoc. Prof. Darius Bufnea

Assoc. Prof. Darius Bufnea

Date of approval

Signature of the head of department

.....

Assoc. Prof. Adrian Sterca