SYLLABUS

1. Information regarding the programme

17 Information regarating the programme				
1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme / Qualification	Cyber Security			

2. Information regarding the discipline

2.1 Name of the discipline				Business Forecasting and Predictive Modelling			
				Prognoză și modelare predictivă pentru afaceri			
2.2 Course coordinator				Lect. Dr. Zsuzsanna Oneț-Marian			
2.3 Seminar coordinator				Lect. Dr. Zsuzsanna Oneț-Marian			
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Optional
study		Semester		evaluation		discipline	
2.8 Code of the MME821			210	0			
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1+1	
3.4 Total hours in the curriculum	Of which: 3.5 course	28	3.6 seminar/laboratory	28		
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations					2	
Other activities:						
3.7 Total individual study hours 69						
3.8 Total hours per semester 125						
3.9 Number of ECTS credits 5						

4. Prerequisites (if necessary)

4.1. curriculum	Algorithmics, data structures, statistics
4.2. competencies	Ability to use data analytics computer software

5. Conditions (if necessary)

5.1. for the course	Students will attend the course with their mobile phones silend	ced.
	Room with a good video projector is needed	
5.2. for the seminar /lab activities	Students will attend the seminar with their mobile phones sile	nced.

6. Specific competencies acquired

es l	•	Understanding the concepts, methods and models used in forecasting and predictive data
ona		modelling.
ssie	•	Understanding the principles, design, and implementation of various forecasting methods.
Professional competencies	•	Learning to conduct incipient original research in forecasting and predictive data modelling.

	•	The ability to apply forecasting methods in solving real world problems.
Transversal competencies	•	Responsible execution of lab assignments, research and practical reports.
enc	•	Application of efficient and rigorous working rules.
isve	•	Manifest responsible attitudes toward the scientific and didactic fields.
ran ml	•	Respecting the professional and ethical principles.
L1 C0		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To introduce the student in forecasting and predictive modelling
7.2 Specific objective of the discipline	 To present the field of forecasting and predictive modelling as a novel research and application domain. To induce the necessity of forecasting and predictive modelling methods by studying relevant practical applications To offer the student the instruments that will allow to develop different forecasting applications.

8. Content

8.1 Course	Teaching methods	Remarks
1: Administration and organization	• Interactive exposure	
2: Introduction to forecasting	Explanation	
3: SAS, R and other software packages	Conversation	
4: Time series graphics and decomposition	Didactical demonstration	
5-6: Exponential smoothing		
7-8: Forecasting with ARIMA models		
9-10: Multiple regression and forecasting		
11: Advanced methods		
12-13: ML based methods		
14: Recap		

Bibliography

R.J. Hyndman, G. Athanasopoulos Forecasting: Principles and Practice, OTexts, 3rd edition, 2018. P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting, Springer Verlag, 2nd edition,

2002.

D.C. Montgomery, C.L. Jennings, M. Kulahci, Introduction to Time Series Analysis and Forecasting, Wiley, 2nd edition, 2015.

M. Huber, D. Modlin, C. Wells. Forecasting Using Model Studio in SAS Viya, 2020 V. Zoonekynd, Statistics with R, 2007

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administration	• Interactive exposure	
2-5. Work to prepare the reports / Optional exercises	• Explanation	
6. Delivery of the experimental report	Conversation	
7. Delivery of the experimental report		

Bibliography

R.J. Hyndman, G. Athanasopoulos Forecasting: Principles and Practice, OTexts, 3rd edition, 2018. P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting, Springer Verlag, 2nd edition, 2002.

D.C. Montgomery, C.L. Jennings, M. Kulahci, Introduction to Time Series Analysis and Forecasting, Wiley, 2nd edition, 2015.

M. Huber, D. Modlin, C. Wells. Forecasting Using Model Studio in SAS Viya, 2020 V. Zoonekynd, Statistics with R, 2007

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the forecasting and predictive modelling field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The correctness and completeness of the accumulated knowledge.	Written exam (in the exam session)	50%
10.5 Seminar/lab activities	An experimental research report containing the application of the methods and techniques discussed during the lecture on some data sets, should be prepared and presented	Evaluation of the research report (a written paper and an oral presentation)	50%
10.6 Minimum perform	nance standards		

Students have to prove that they acquired an acceptable level of knowledge and understanding of the forecasting and predictive modelling domain, that they are capable of stating this knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving different problems.

Class attendance is neither formally required nor observed.

Successful passing of the exam is conditioned by:

- The final grade that has to be at least 5
- The written exam grade has to be at least 5

Penalty points are awarded for delays in submission of proposed topic choices and submission of final reports.

Date 30.04.2024

Signature of course coordinator Lect. dr. Onet-Marian Zsuzsanna

Date of approval

Signature of seminar coordinator Lect. dr. Oneț-Marian Zsuzsanna

Signature of the head of department Assoc. prof. Sterca Adrian