SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj		
institution			
1.2 Faculty	Mathematics and Computer Science		
1.3 Department	Mathematics and Computer Science in Hungarian		
1.4 Field of study	Computer Science		
1.5 Study cycle	master		
1.6 Study programme /	Databases		
Qualification			

2. Information regarding the discipline

2.1 Name of the discipline Database Management Systems Implementation						nentation	
2.2 Course coordinator				Viorica Varga PhD			
2.3 Seminar coordinator				Viorica Varga PhD			
2.4. Year of	1	2.5	1	2.6. Type of	exam	2.7 Type of	required
study Semester evaluation discipline							
2.8 Code of the discipline MME8037							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/project	2
2.4 Tetal heren in the committee land	5.0	Of-1:1:25	20	26	20
3.4 Total hours in the curriculum	36	Of which: 3.5 course	28	3.6 seminar/project	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					2
Other activities:					

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	• non
4.2. competencies	• developing applications on relational DBMSs (SQL, relational algebra -
	completed an introductory course on Databases)
	• sorting/searching techniques (quick/merge sorts, binary trees, hash tables -
	course on Design and Analysis of Algorithms)

5. Conditions (if necessary)

5.1. for the course	Video projector
---------------------	-----------------

5.2. for the seminar /lab	Visual Studio or Java or Phyton
activities	

6. Specific competencies acquired

<u>v. 5</u>	Jecine	competencies acquired
lal	ies	 have a good insight into how DBMSs function internally
ion	enc	 understand how to analyse the performance of data-intensive systems
less	pet	• be familiar with a variety of programming techniques for large-scale data manipulation
Prof	competencies	 apply the insights achieved to build the major components of a mini-DBMS.
	၁	
		• this course gives the basics for query optimization
ਕ	ies	
ers	enc	
Transversa	competencies	
ran	lmo	
	cc	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The course objective is the presentation of data storage in databases, buffer management, index techniques, query processing and the overview of query optimization in relational databases. The students will be able to understand query processing in relational databases Implementation of a simple Database Management System (DBMS).
7.2 Specific objective of the discipline	 Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; File and System Structure: page layout and access; buffer management; file organizations (heap, sorted, clustered); row stores versus column stores; Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible, linear); multi-dimensional (UB-tree, k-d-b tree, R-tree) External Sorting: external n-way merge sort; sorting based on B+trees; Query Evaluation: Selection (index-based, hash-based, arbitrary selection predicates); projection (duplicate elimination; hash-based, sorting-based); joins (nested-loops, index nested, block nested, sortmerge, hash joins); set operations; aggregation; impact of buffering, pipelining, blocking; evaluation techniques in existing systems;

8. Content

8.1 Course	Teaching methods	Remarks
1. The structure of the physical database. The	Presentation,	
structure of the magnetic disc. Optimization of	Examples	
Disk-Block Access. RAID (redundant arrays of		
independent disks)		
2. Buffer-replacement policies. File organization:	Presentation,	
fixed-length records, variable-length records,	Examples	
sequential file, heap file, sorted file, multitable		
clustering file organization. Data dictionary		

storage	
	Presentation,
•	Examples
*	Examples
Mechanism. Index update. Primary (clustering)	
and secondary (unclustering) indices.	D
	Presentation,
·	Examples
	Presentation,
	Examples
Ç,	Presentation,
	Examples
delete in hash files. Comparison of ordered	
indexing and hashing.	
	Presentation,
	Examples
indices.	
	Presentation,
	Examples
implementation. (linear search, binary search,	
using indices, selections involving comparison)	
9. Algorithms for external sorting.	Presentation,
	Examples
	Presentation,
	Examples
11. Algorithms for join implementation (nested-loop	Presentation,
join, block nested-loop join, indexed nested-loop	Examples
join, merge join, hash join, cost of algorithms).	
Implementation of pipelining.	
	Presentation,
	Examples
13. Overview of query optimization. Transformation	Presentation,
	Examples
	Presentation,
	Examples
results: selection size estimation, join size	•
estimation, size estimation for other operations.	
System R query optimization algorithm.	
Materialized view, it's maintenance and using it	
, ,	
in query optimization.	

[MUW00] H. Garcia-Molina, J. D. Ullman, J. Widom: Database Systems - The Complete Book, Prentice Hall Upper Saddle River, New Jersey, 2008.

[R02] R. Ramakrishnan: Database Management Systems, WCB McGraw-Hill, Boston, 2002.

https://pages.cs.wisc.edu/~dbbook/

[SKS06]A. Silberschatz, H. Korth, S. Sudarshan: Database System Concepts, McGraw-Hill, New York, 2006.

[V06] V. Varga, Interogarea bazelor de date distribuite, Casa Cărții de Știință, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Implementation of a complete single-user		
relational database management system. It		
involves a significant amount of coding. The		
project is highly structured, but there is enough		
slack in the specification so that creativity is both		

allowed and required.It is recommended to	
implement a server component and a client one.	
The client can be implemented as Windows	
interface, Web client or a command line parser.	
2. The Record Management (RM) Component:	
implement a set of functions for managing	
unordered files of database records. (There is	
recommended to use binary files to implement	
unordered files). You can consider fix length	
records; the management of variable length	
records is optional. One idea to implement the	
delete operation of a record is the logical delete. It	
means to store for every record in one bit, which	
store: the record is deleted or not. In order to not	
read the whole file to find deleted records and	
overwrite them with new ones, you can link the	
deleted records in a stack or queue. The top of the	
deleted records stack can be stored in the first	
record of the file. You have to store the system	
catalog. It will contain table names, index file	
names. For every table the file name, where the	
table is stored, the structure of the table, the	
constraints, the associated index files. For every	
index file, the search key, the type of it. You can	
implement the catalog in XML file. In Catalog.xml	
you can find an example.	
34. <i>The Indexing (IX) Component:</i> implement a	
facility for building indexes on records stored in	
unordered files. The indexing facility will be based	
on B+ trees or dynamic hashing.	
5. The System Management (SM) Component: This	
part will implement various database and system	
1	
utilities, including data definition commands (at least	
integer and character data type), including primary	
key and foreign key constraint (primary key have to	
be implemented for one or more columns, but foreign	
key is optional to implement for more than one	
column), index definition commands and catalog	
management. For primary key you will create index	
file automatic. The System Management component	
will rely on the Record Management and Indexing	
components from Parts 1 and 2. It also will use a	
command-line parser or a graphical user interface.	
6. The Query Language (QL) Component: In this part	
students will implement a query language, which	
consists of user-level data manipulation commands,	
both queries and updates (SQL Select, Insert, Update,	
Delete can be used). The Query Language component	
will use a command-line parser or a graphical user	
interface. The queries have to be processed, using	
algorithms presented at the course. Features you have	
•	
1	
projection, join of tables, aggregation, cumulative	
functions, (subquery, order by is optional for extra	
points).	

7.Create a database with 3 tables with the project.	
Update the data and run queries.	
Bibliography	
https://cs186.gitbook.io/project/	
https://courses.cs.washington.edu/courses/cse444/22wi	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• This course is in concordance with the program of similar courses in other universities: http://www.cs.ox.ac.uk/teaching/courses/databasesystemsimplementation/

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	exam	written test	40
10.5 Seminar/lab	mini DBMS project	Test by instructor with	60
activities		different inputs	
10.6 Minimum performa	nce standards		

First 4 labs have to be presented from the mini DBMS project

> 50 points to accumulate

Date	Signature of course coordinator	Signature of seminar coordinator		
22 February 2024	assoc. prof. Viorica Varga	assoc. prof. Viorica Varga		
Date of approval	Signature of	Signature of the head of department		
22 February 2024		Conf. Dr. Adrian Sterca		