SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computers and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme /	Information Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Design Patterns / Şabloane de Proiectare					
(ro)							
2.2 Course coordinator		Lect. PhD. Arthur Molnar					
2.3 Seminar coordinator							
2.4. Year of study	4	2.5 Semester	8	2.6. Type of evaluation	C	2.7 Type of discipline	Optional DS
2.8 Code of the discipline		MLE8115					·

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	3	
				seminar/laboratory		
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42	
				seminar/laboratory		
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:					-	

3.7 Total individual study hours	55
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•	Computer programming and programming languages
	•	Object Oriented Programming

4.2. competencies	•	Good programming skills in Java or C#

5. Conditions (if necessary)

5.1. for the course	•	Lecture hall with projector
5.2. for the seminar /lab	•	Computers with installed IDE for Java/C# development
activities		

6. Specific competencies acquired

al es ,	C2.2 Explaining the role, interaction and operation of hardware, software and communication components
sions	C3.1 Identifying classes of problems and solving methods that are specific to computing systems
Professional competencies	C3.3 Applying solution patterns using specific engineering tools and mehods
	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
Transversal competencies	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Enhance students' understanding of software design concepts through a pragmatic approach
	 Provide students with an environment in which they can explore the usage and usefulness of software design concepts in various business scenarios
	 Induce a realistic and industry driven view of software design concepts such as design patterns and their inherent benefits
7.2 Specific objective of the discipline	 Give students the ability to explore various object oriented programming languages.
	 Improve the students abilities to tackle business requirements.
	Enhance the students understanding of business needs and business
	value.
	Provide students with insights into ways of working towards achieving
	high quality software.

8. Content

8.1 Course	Teaching methods	Remarks
1. OOP Principles Recap: Recap presentation that	description,	
mostly covers main OOP principles such as	explanation,	
encapsulation, polymorphism, cohesion,	example,	
coupling, aggregation, composition	case studies,	
2. SOLID principles: base principles of high	dialogue,debate	
quality software: Single responsibility, Open-		
closed, Liskov substitution, Interface		
segregation and Dependency inversion		
3. Creational Patterns (Factory, Builder,		

Prototype, Singleton)
4. Structural Patterns (Adapter, Bridge,
Composite)
5. Structural Patterns (Decorator, Facade,
Flyweight)
6. Structural Patterns (Proxy), Behavioural
Patterns (Chain of Responsibility, Command)
7. Behavioral Patterns (Iterator, Mediator,
Memento)
8. Behavioral Patterns (Observer, State, Strategy)
9. Behavioral Patterns (Template, Visitor)
10. Architectural Patterns (MVVM, MVP, MVC)
11. Antipatterns: common responses to recurring
problems that are usually ineffective and risk
being highly counterproductive
12. Dark Patterns
13. Enterprise Integration Patterns
14. Recap

Bibliography

- 1. M. Fowler Patterns of Enterprise Application Architecture, Addison Wesley, 2003
- 2.E. Freeman, E. Freeman, B. Bates Head First Design Patterns, Oreilly, 2004
- 3. E. Gamma, R. Helm, R.Johnson, J. Vlissides Design Patterns Elements of Reusable Object-Oriented Software, Addison Wesley, 1995
- 4. Robert C. Martin Clean Architecture: A Craftsman's Guide to Software Structure and Design, Addison Wesley, 2017
- 5. Alex Xu System Design Interview -- An Insider's Guide, Byte Code LLC, 2020

8.2 Seminar / laboratory	Teaching methods	Remarks
OOP Recap. Introduction to laboratory	Explanation,	
activities and grading	dialogue,	
2. SOLID principles.	case studies	
3. Creational design patterns		
4. Structural design patterns.		
5. Behavioural design patterns.		
6. Antipatterns. Dark Patterns.		
7. Architectural Patterns.		

Bibliography

- 1. M. Fowler Patterns of Enterprise Application Architecture, Addison Wesley, 2003
- 2. E. Freeman, E. Freeman, B. Bates Head First Design Patterns, Oreilly, 2004
- 3. E. Gamma, R. Helm, R.Johnson, J. Vlissides Design Patterns Elements of Reusable Object- Oriented Software, Addison Wesley, 1995

8.2 Project	Teaching methods	Remarks
Selection of project theme	Explanation,	
2. Establishing project requirements	dialogue, presentation	
3. Establishing project requirements (continued)		
4. Project architecture		
5. Project architecture is finalized		
6. Detailed Design, design patterns used		
7. Detailed Design, design patterns used		
(continued)		
8. First solution prototype		

9. Discussion of suitable design patterns for	
implementation	
10. Discussion of suitable design patterns for	
implementation (continued)	
11. Second prototype is completed	
12. Final check-in	
13. Project presentations	
14. Project presentations (continued)	

Bibliography

- 1. M. Fowler Patterns of Enterprise Application Architecture, Addison Wesley, 2003
- 2. E. Freeman, E. Freeman, B. Bates Head First Design Patterns, Oreilly, 2004
- 3. E. Gamma, R. Helm, R.Johnson, J. Vlissides Design Patterns Elements of Reusable Object- Oriented Software, Addison Wesley, 1995
- 4. Robert C. Martin Clean Architecture: A Craftsman's Guide to Software Structure and Design, Addison Wesley, 2017
- 5. Alex Xu System Design Interview -- An Insider's Guide, Byte Code LLC, 2020

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course observes the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the study program of all major universities in Romania and abroad.
- The content of the course is considered important for advanced programming skills within the software industry.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Presentation during the	Grading based on	25%
	semester	presentation quality,	
	Individual presentation	thoroughness and suitability	50%
	(colloquium)	of examples selected.	
10.5 Seminar/lab activities	Laboratory project:		25%
	architecture & design		
	pattern application		

Minimum performance standards

- > Students must observe the standards of academic integrity.
- A minimum passing grade is defined by attaining at least 50% (5/10) points in the final grade.

Date

Signature of course coordinator

Signature of seminar coordinator

12.05.2022.

Lect PhD. Arthur Molnar

Lect PhD. Arthur Molnar

Date of approval

Signature of the head of department

Prof. dr. Laura Dioșan