1. mormation regarding the	Programme
1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computers and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme /	Information Engineering
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discip	oline					
(en)			Microwaves			
(ro)			Microunde			
2.2 Course coordinator Prof. Dr. Daniel Aurelian Andreic			ca			
2.3 Seminar coordinator			f. Dr. Daniel Aurelian A	ndrei	ca	
2.4. Year of study III 2.5 Semester			2.6. Type of evaluation	C	2.7 Type of discipline	Optional DS
2.8 Code of the MLE7033						
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					8
Evaluations					2
Other activities:					-
3.7 Total individual study hours		44			
3.8 Total hours per semester		100			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	The student must have successfully passed the following exams:
	Physics (semester I), Electronic Devices and Analog Electronics

4

	(semester III), and Digital Electronics (semester IV).				
4.2. competencies	Fundamental knowledge and practical abilities gained during the following courses: Physics (semester I), Electronic Devices and Analog electronics (semester III), and Digital Electronics (semester IV).				

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard and video projector.
5.2. for the seminar /lab	Laboratory classroom which contains the necessary equipment for the study
activities	of microwaves and UHF/microwave circuits (components, oscilloscopes,
	spectrum analyzers and vector network analyzers).

6. Specific competencies acquired

i	te competencies acquirea
	C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting
	their results.
es al	C3.3 Applying solution patterns using specific engineering tools and mehods.
on: nci	C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance
ete	optimization.
Professional competencies	C5.1 Appropriate use of the operating principles of electronic devices and circuits, as well as methods of
Pr	measuring electrical quantities.
	C5.2 Analysing, designing, executing and measuring of electronic circuits of low/ medium complexity.
	C5.4 Use of electronic tools to characterize and evaluate the performance of electronic circuits.
rsal encies	CT1. Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation.
Transversal competencies	CT3. Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The study of microwaves technology and UHF/microwave circuits and devices.
7.2 Specific objective of the	O1. Acquiring of theoretical notions in the field of microwaves.
discipline	O2. Solving problems specific to the field of microwaves using knowledge gained in objective O1.
	O3. The application of general notions of analog and digital electronics along with
	the notions gained in objectives O1 and O2 in order to design and analyze microwave/UHF circuits.

8. Content

8.1 Course				Teaching methods	Remarks
Introduction.	Electromagnetic	theory.	Maxwell's		2 h
equations. The Helmholtz equations. Microwaves.				2 11	

		[]
Transmission line analysis. The telegrapher's		
equations. Energy and power. Input impedance. Wave	-	2 h
reflection. Losses.		
The Smith chart. Resistance. Reactance. Impedance.		5 h
Admittance. Conductance. Susceptance. Reflection		
coefficient. Impedance matching.		
Wave propagation and characteristic parameters. TE,	Lecturing, exposition,	
TM, and TEM modes. Waveguides. Striplines and	demonstrations,	4 h
Microstrip lines.	discussions and	
Microwave networks. S, Y, Z and hybrid matrices.	debates. 2 h 4 h	2 b
The ABCD transmission matrix.		2 h
Linear electric circuits. UHF filters. Filter types.		4 b
Specific parameters.		4 11
Active microwave/UHF components. UHF diodes.		
UHF transistors. UHF amplifiers. Microwave		4 h
oscillators.		
UHF and microwave systems. Antennas. Wireless		
communications. Radar systems. Radiometry. The		5 h
effects of microwaves on the environment.		
Rihlingranhy	•	

Bibliography

1. Reinhold Ludwig and Pavel Bretchko, RF Circuit Design: Theory and Applications, Prentice Hall, 2000.

2. D. Pozar, Microwave Engineering, 4th Ed., Wiley, 2012.

3. N. Crișan, T. Palade, L. Cremene, E. Pușchiță, Microunde - Aplicații, Vol. 1, Ed. U. T. Press, Cluj-Napoca, 2008.

4. T. Palade, A. Moldovan, E. Puşchiță, I. Vermeşan, R. Colda, *Microunde - Aplicații, Vol. 2*, U. T. Press, Cluj-Napoca, 2009.

5. G. Rulea, *Bazele Teoretice și Experimentale ale Tehnicii Microundelor*, Ed. Științifică și Enciclopedică, București, 1989.

8.2 Seminar / laboratory	Teaching methods	Remarks
Laboratory safety rules and guidelines. Familiarization with laboratory equipment.		2h
Specific measurements at high frequencies. The Vector Network Analyzer (VNA).		2h
Reflection measurements. The reference plane.		2h
Determination of transmission line parameters. Microwave reflectometry.	Active participation (experimental	3h
Transmission measurements. The study of passive components at high frequencies.	realization and analysis of circuits,	3h
Filter characterization using the VNA. The construction of UHF filters using microstrip lines.	performing measurements, the	4h
The study of UHF oscillators using the VNA. The determination of specific parameters.	interpretation and presentation of	2h
The study of UHF amplifiers using the VNA. Determination of specific parameters.	obtained results)	3h
The study of antennas. Impedance matching.		3h
Completion/clarification of laboratory work. Questions, answers and discussions.		2h
Evaluation of laboratory activity.]	2h

Bibliography

1. Reinhold Ludwig and Pavel Bretchko, RF Circuit Design: Theory and Applications, Prentice Hall, 2000.

2. D. Pozar, Microwave Engineering, 4th Ed., Wiley, 2012.

3. Gerfried Palme, Measurements With the DG8SAQ VNWA 2/3 Vector Network Analyzer, 2nd English Edition,

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is in accordance with the subjects which are studied in the same field in Romanian and foreign universities and with the specific demands of research institutes, the economy and the labour market.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Mastery and understanding of basic concepts, theories and methods in the field of microwaves. The application of basic knowledge in the field of microwaves in order to solve specific problems.	Final exam	75 %
10.5 Seminar/lab activities	The preparation and practical realization of laboratory experiments and data analysis. The content of the laboratory reports, quality of writing, and corectness of the data analysis and the	The observation of the student during laboratory work, discussions and grades of the laboratory reports.	10 %
	conclusions drawn.	Laboratory exam	15 %

10.6 Minimum performance standards

- Mastery and understanding of basic concepts in the field of microwaves and their correct usage in order to perform measurements and specific characterizations: distributed elements, transmission lines, quantities specific to high frequencies.
- Correctly solving problems of medium difficulty in the field of microwaves.
- The correct use of the Smith chart in circuit analysis and impedance matching.
- The correct use of laboratory equipment in order to perform measurements.
- Course attendance is optional.
- In order to participate in the final exam, the student must have a minimum laboratory attendance of 90 %.
- The student must obtain a minimum passing grade (5) during the laboratory exam as well as for each laboratory report.

Date

Signature of course coordinator

Signature of seminar coordinator

Judie

Judie

13.05.2022

Date of approval

Signature of the head of department

Prof. dr. Laura Dioşan

iose

24.05.2022