SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Information Engineering

2. Information regarding the discipline

2.1 Name of the	disc	cipline	Cryptography and data protection				
2.2 Course coord	lina	tor	Prof.PhD. Septimiu Crivei				
2.3 Seminar coordinator			Prof.PhD. Septimiu Crivei				
2.4. Year of	3	2.5 Semester	5	2.6. Type ofC2.7 Type ofOptional			
study				evaluation		discipline	DS

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14
Time allotment:					
Learning using manual, course suppo	ort, bib	liography, course notes			14
Additional documentation (in librarie	es, on o	electronic platforms, field	d docu	mentation)	8
Preparation for seminars/labs, homework, papers, portfolios and essays 14					14
Tutorship 14					14
Evaluations 8					8
Other activities:					0
3.7 Total individual study hours58					
3.8 Total hours per semester100					
3.9 Number of ECTS credits 4					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

cies	C3.1 Identifying classes of problems and solving methods that are specific to computing systems
ompeten	C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
Professional c	C3.5 Developing and implementing information system solutions for concrete problems
mpetencies	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
ersal co	CT2 Identifying, describing and conducting processes in the project management field, undertaking different team roles and clearly and concisely describing own profesional results, verbally or in writing
Transv	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	To present mathematical algorithms used in public-key
discipline	cryptography.
7.2 Specific objective of the	Number-theoretic and algebra algorithms will be
discipline	studied and implemented in projects.

8. Content

8.1 Course		Teaching methods	Remarks
1.	Classical cryptography. Examples	interactive exposure,	
		explanation, didactical	
		demonstration	
2.	Algorithm complexity, elements of number	interactive exposure,	
theory	/	explanation, didactical	
		demonstration	
3.	Public-key cryptography. RSA	interactive exposure,	
		explanation, didactical	
		demonstration	
4.	Algorithms for testing primality	interactive exposure,	
		explanation, didactical	
		demonstration	
5.	Algorithms for factoring integers	interactive exposure,	
		explanation, didactical	
		demonstration	
6.	Quadratic residues. Rabin public-key	interactive exposure,	
crypto	osystem	explanation, didactical	

		demonstration	
7.	Polynomials. Finite fields	interactive exposure,	
		explanation, didactical	
		demonstration	
8.	ElGamal public-key cryptosystem	interactive exposure,	
		explanation, didactical	
		demonstration	
9.	Algorithms for computing discrete logarithms	interactive exposure,	
		explanation, didactical	
		demonstration	
10.	Factorization of polynomials: Berlekamp's	interactive exposure,	
algort	ihm	explanation, didactical	
		demonstration	
11.	Digital signatures	interactive exposure,	
		explanation, didactical	
		demonstration	
12.	Key-related protocols	interactive exposure,	
		explanation, didactical	
		demonstration	
13.	Practical aspects of public-key cryptosystems	interactive exposure,	
		explanation, didactical	
		demonstration	
14.	Eliptic-curve cryptography	interactive exposure,	
		explanation, didactical	
		demonstration	

Bibliography

1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.

2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.

3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.

4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]

5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

8.2 Seminar / laboratory		Teaching methods	Remarks		
1.	Classical cryptography	interactive exposure,	The lab is scheduled as 2		
		algorithmization	hours every second week		
2.	Algorithm complexity	interactive exposure,			
		algorithmization			
3.	Modular arithmetics	interactive exposure,			
		algorithmization			
4.	Algorithms for testing primality	interactive exposure,			
		algorithmization			
5.	Algorithms for factoring integers	interactive exposure,			
		algorithmization			
6.	Public-key cryptography	interactive exposure,			
		algorithmization			

	7.	Practical aspects of public-key	interactive exposure,	
	crypto	systems	algorithmization	
Biblio	graphy			

1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.

2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.

3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.

4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]

5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The contents is directed towards practical applications of public-key cryptography. The topic is present in the computer science study programme of all major universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade		
10.4 Course	Use of basic concepts in examples	Assessments	50		
10.5 Seminar/lab	Implement course concepts and	Practical examination	50		
	algorithms				
10.6 Minimum performance standards					
Grade 5					

Date Signature of course coordinator

30.04.2022 Prof.PhD. Septimiu CRIVEI

Signature of seminar coordinator

Prof.PhD. Septimiu CRIVEI

Sarrei

Date of approval

Savei

Signature of the head of department

Prof.PhD. Laura Diosan

biosen

24.05.2022