SYLLABUS

The information regarding the programme				
1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computers and Information Technology			
1.5 Study cycle	Bachelor			
1.6 Study programme / Qualification	Information Engineering			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Signals and systems				
(ro)			Sei	Semnale și sisteme			
2.2 Course coord	inator		As	Assoc. Prof. PhD. Eng. Cristian P. CHIONCEL			
2.3 Seminar / Lat	har / Laboratory Assoc. Prof. PhD. Eng. Cristian P. CHIONCEL						
coordinator							
2.4. Year of study	III	2.5	5	2.6. Type of	Ε	2.7 Type of	Compulsory
		Semester	evaluation discipline DS			DS	
2.8 Code of the MLE7030							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	3	3.3	1 LP
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	42	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	5		14
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					11
Tutorship					3
Evaluations					2
Other activities:					-
3.7 Total individual study hours44					•
3.8 Total hours per semester 100					

3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	٠	Basic knowledge in mathematics, physics, manipulation of mathematical expressions
4.2. competencies	•	Basic computer skills & math

5. Conditions (if necessary)

5.1. for the course	• theoretical aspects presented in the cours
5.2. for the seminar /lab	knowledge of the laboratory work
activities	

6. Specific competencies acquired

nal cies	Designing hardware, software and communication components (C2)
Profession competenc	Use of signal processing methods and artificial intelligence techniques to solve real-world problems (C6)
al ies	Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation (CT 1)
Transvers competenc	Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge (CT 3)

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Familiarizing students with basic knowledge of deterministic signals and linear systems
7.2 Specific objective of the discipline	• Development of the ability to solve problems related to signals and systems in the activity of design, production and engineering

8. Content

8.1 Course	Teaching methods	Remarks
 Signal. Definitions. Important signals in the field of engineering. Description & properties of continuous time and discrete time: continuous time sinusoidal signal, discrete time sinusoidal signal, continuous time unit stage signal, discrete unit stage signal 		3 hours
 2. Continuous pulse signal in continuous time (Dirac pulse): filtering property, the connection between the unit pulse and the unit stage; the unit pulse signal in discrete time; the signal ramps in continuous time; the signal ramps in discrete time 	Exposure, problematization, conversation, explanations	3 hours
 The exponential signal defined in continuous time; the exponential signal defined in discrete time. Continuous time exponential tire oscillation. Discrete exponential tire oscillation. 		3 hours

4. Complex signals. Phasor		3 hours
5 Simple signal transformations: multiplying a		3 hours
continuous signal and a discrete signal by a		
constant, moving a continuous signal and a		
discrete signal over time, reflecting, and moving		
the reflected signal. Illustrations		
6. Simple signal transformations: time scaling for		3 hours
analog signals, time scaling for discrete		
signals, combination of simple		
transformations. Illustrations		
7. The odd component and the odd component of		3 hours
a signal. Their construction. Illustrations		
8. Energy and signal strength. Examples. Notions		3 hours
about distributions. The operator.		
9. Systems. Examples of analog and digital		3 hours
systems. Feature of an analog-to-digital		
converter (ADC). Modeling an analog system /		
modeling a discrete system.		
10. Linear system. Linear incremental system.		3 hours
Invariant systems in time translation. Systems		
stability		
11. Causality of systems. Examples of systems: the		3 hours
ideal proportional system, the ideal derivation		
system, the ideal integrative system.		
12. Convolution. Convolution in discrete time.		3 hours
LTIS analysis using the convolution operation.		
The convolution if the signal is of infinite		
duration.		21
13. Properties of convolution (commutativity,		3 hours
distributivity, associativity, neutral element).		
14 Observations on the impulse menones of		2 hours
14. Observations on the impulse response of		3 nours
impulse response of a sought LTIS stability of		
an LTIS system equivalent to series connected		
I TIS		
Bibliography		
1 Adelaida Mateescu N Dumitru I. Stanciu Semi	nale și șisteme Ed Teor	a Bucuresti 2001
2 Nafornita I Semnale circuite si sisteme Ed Poli	itehnica Timisoara 200	6
3. Chioncel P. Cristian. Prelucrarea numerică a ser	<i>nnalelor</i> . Ed. Eftimie M	urgu. 2009
8.2. Laboratory	Teaching methods	Remarks
1. Health and safety in laboratory.	Explanation	2 hours
2. Study of periodic signals	I	4 hours
3. LTIS analysis	Laboratory	4 hours
4. Convolution of signals	experiment,	2 hours
5. Evaluation, debt remaining hours.	discussion and debate	2 hours
Bibliography		·
1. Adelaida Mateescu, N. Dumitru, L. Stanciu Semnale	și sisteme, Ed. Teora, Bu	icurești, 2001
2. Nafornita I, Semnale, circuite și sisteme, Ed. Politehn	ica, Timișoara, 2006	· ·

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

• They have been established with the main employers by previous discussions at the study programme substantiation.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Involvement	Number of interventions	10 %		
	Accumulated knowledge	Exam (on paper)	60 %		
10.5.2 Lab activities	Involvement	Number of interventions	10 %		
	Accumulated knowledge	Practical test	20 %		
10.6 Minimum performance standards					
Completion of Applicative Activities (laboratory work accomplishment and project approval by the minimum grade of 5).					
Completion of each exams subject by the minimum grade of 5.					

Date

Signature of course coordinator

Signature of laborator coordinator

Mai 2022

Assoc. Prof. PhD. Eng. Cristian

P. CHIONCEL

Assoc. Prof. PhD. Eng. Cristian

P. CHIONCEL

Date of approval

Signature of the head of department Prof. dr. Laura Dioşan

24.05.2022