0 0	
1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computers and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme /	Information Engineering
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Algorithm design (Proiectarea algoritmilor)					
(ro)							
2.2 Course coordinator		Lec	Lect. PhD. Radu D. Găceanu				
2.3 Seminar coordinator		Lect. PhD. Radu D. Găceanu					
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	С	2.7 Type of	Compulsory
						discipline	DD
2.8 Code of the discipline MLE5173							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 LP
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	liography, course note	5		15
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					5
Tutorship					5
Evaluations					4
Other activities:				-	
3.7 Total individual study hours 44					
3.8 Total hours per semester100					
3.9 Number of ECTS credits4					

4. Prerequisites (if necessary)

4.1. curriculum	Advanced Programming MethodsDatabases
	•Distributed Operating Systems
4.2. competencies	•Average programming skills in a high level programming

language
Basic concepts of databases
 Basic concepts of networking

5. Conditions (if necessary)

5.1. for the course	Room with projector
5.2. for the seminar /lab	Laboratory with internet access and ability to use personal laptops
activities	

6. Specific competencies acquired

	C2.1 Describing the structure and operation of hardware, software and
	communication components
	C2.2 Explaining the role, interaction and operation of hardware, software
	and communication components
	C2.3 Construction of hardware and software components of computing
	systems using design methods, languages, algorithms, data structures,
cies	protocols and technologies
tene	C2.4 Metric based evaluation of functional and non-functional
ipet	characteristics of computing systems
com	C2.5 Implementation of hardware, software
al c	components
ion	C4.1 Identifying and describing technologies, programming environments
fess	and various concepts that are specific to programming engineering
roi	C4.2 Explaining the role, interaction and operation patterns of software
H	system components
	C4.3 Developying specifications and designing information systems using
	specific methods and tools
	C4.4 Managing the life cycle of hardware, software and communications
	systems based on performance evaluation
	C4.5 Developing, implementing and integrating software solutions
	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the
	professional reputation
l es	CT2 Identifying, describing and conducting processes in the projects management field,
rsal	undertaking different team roles and clearly and concisely describing own profesional
sve	results, verbally or in writing, in Romanian and in an international language.
ant ant	CT3 Demonstrating initiative and pro-active behavior for updating professional,
Tr co	economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	•To understand distributed software concepts and problems
discipline	 Improved design and programming skills

7.2 Specific objective of the	 To have a systematic knowledge concerning application
discipline	development methodologies
1	•To be familiarized with modern concepts and preoccupations in the
	field of developing application software
	•To know the use of computer-aided software development tools

8. Content

8.1 Course	Teaching methods	Remarks
1. Build automation, dependency management;	Presentation, conversation, case studies	
version control systems		
2. JDBC	Presentation, conversation, case studies	
3. Inversion of control containers	Presentation, conversation, case studies	
4. The client server architecture	Presentation, conversation, case studies	
5. Remote procedure call	Presentation, conversation, case studies	
6. Object relational mapping	Presentation, conversation, case studies	
7. Object relational mapping	Presentation, conversation, case studies	
8. Enterprise application integration	Presentation, conversation, case studies	
9. Enterprise application integration	Presentation, conversation, case studies	
10. Web services	Presentation, conversation, case studies	
11. Web applications	Presentation, conversation, case studies	
12. Web sockets	Presentation, conversation, case studies	
13. Web security	Presentation, conversation, case studies	
14. NoSql databases	Presentation, conversation, case studies	

Bibliography

1. Joseph Albahari and Ben Albahari, C# 6.0 in a Nutshell, Sixth Edition, O'Reilley, 2015.

2. Larman, C.: Applying UML and Design Patterns: An Introduction to OO Analysis and Design and Unified Process, Berlin, Prentice Hall, 2002.

3. Fowler, M., Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.

4. Hohpe, G., Woolf, B., Enterprise integration patterns, Addison-Wesley, 2003.

5. ***, Microsoft Developer Network, Microsoft Inc., http://msdn.microsoft.com/

6. ***, The Java Tutorial, SUN Microsystems, Inc. http://download.oracle.com/javase/tutorial/

7. Eckel, B., Thinking in Java, 4th edition, Prentice Hall, 2006

8. Walls, Craig, Spring in Action, Fourth Edition, Ed. O'Reilley, 2015.

9. Spring http://projects.spring.io/spring-framework

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Build automation, dependency management;	Presentation, conversation, case studies	
version control systems		
2. JDBC	Presentation, conversation, case studies	
3. Inversion of control containers	Presentation, conversation, case studies	
4. The client server architecture	Presentation, conversation, case studies	
5. Remote procedure call	Presentation, conversation, case studies	
6. Object relational mapping	Presentation, conversation, case studies	

7. Object relational mapping	Presentation, conversation, case studies
8. Enterprise application integration	Presentation, conversation, case studies
9. Enterprise application integration	Presentation, conversation, case studies
10. Web services	Presentation, conversation, case studies
11. Web applications	Presentation, conversation, case studies
12. Web sockets	Presentation, conversation, case studies
13. Web security	Presentation, conversation, case studies
14. NoSql databases	Presentation, conversation, case studies

Bibliography

1. Joseph Albahari and Ben Albahari, C# 6.0 in a Nutshell, Sixth Edition, O'Reilley, 2015.

2. Larman, C.: Applying UML and Design Patterns: An Introduction to OO Analysis and Design and Unified Process, Berlin, Prentice Hall, 2002.

3. Fowler, M., Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.

4. Hohpe, G., Woolf, B., Enterprise integration patterns, Addison-Wesley, 2003.

- 5. ***, Microsoft Developer Network, Microsoft Inc., http://msdn.microsoft.com/
- 6. ***, The Java Tutorial, SUN Microsystems, Inc. http://download.oracle.com/javase/tutorial/
- 7. Eckel, B., Thinking in Java, 4th edition, Prentice Hall, 2006
- 8. Walls, Craig, Spring in Action, Fourth Edition, Ed. O'Reilley, 2015.
- 9. Spring http://projects.spring.io/spring-framework

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course fulfils the IEEE and ACM Curricula Recommendations for Computer Science studies

The content of the course is considered by software companies as being important for average design and advanced programming skills

10. Evaluation

•

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	To know the basic concepts of developing distributed applications; To apply these concepts to design and implement a small distributed	Practical exam (examination session)	Up to 200 points (40%)
		Tests/quizzes during the semester	Up to 100 points (20%)

	application			
10.5 Seminar/lab activities	Being able to design and implement distributed applications using various technologies	Practical examination, observation documentation; tests and assignments during classes	Up to 200 points (40%)	
10.6 Minimum performance standards				
At least 100 out of 500 possible points.				

Date

Signature of course coordinator Signature of seminar coordinator

16.05.2022

Radu Gaceanu

Radu Gaccanu

Date of approval

Signature of the head of department

Prof. dr. Laura Dioşan

Wissen

24.05.2022