## SYLLABUS

## 1. Information regarding the programme

| 1.1 Higher education <br> institution | Babeş-Bolyai University |
| :--- | :--- |
| 1.2 Faculty | Faculty of Mathematics and Computer Science |
| 1.3 Department | Department of Computer Science |
| 1.4 Field of study | Computers and Information Technology |
| 1.5 Study cycle | Bachelor |
| 1.6 Study programme / <br> Qualification | Information Engineering |

## 2. Information regarding the discipline

| 2.1 Name of the discipline |  | Linear algebra, analitical and differential geometry 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.2 Course coordinator |  |  | Lect. Dr. Iulian Simion |  |  |  |  |
| 2.3 Seminar coordinator |  |  | Lect. Dr. Iulian Simion |  |  |  |  |
| 2.4 Year of study | 1 | 2.5 Semester | 2 | 2.6. Type of evaluation | VP | 2.7 Type of discipline | Compulsory |
| 2.8 Disciplinei code |  | MLE0014 |  |  |  |  |  |

3. Total estimated time (hours/semester of didactic activities)

| 3.1 Hours per week | 4 | Of which: 3.2 course | 2 | 3.3 seminar | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3.4 Total hours in the curriculum | 56 | Of which: 3.5 course | 28 | 3.6 seminar | 28 |
| Time allotment: | hours |  |  |  |  |
| Learning using manual, course support, bibliography, course notes | 20 |  |  |  |  |
| Additional documentation (in libraries, on electronic platforms, field documentation) | 10 |  |  |  |  |
| Preparation for seminars/labs, homework, papers, portfolios and essays | 14 |  |  |  |  |
| Tutorship | 14 |  |  |  |  |
| Evaluations | 11 |  |  |  |  |
| Other activities: ................. |  |  |  |  |  |
| 3.7 Total individual study hours | 69 | - |  |  |  |
| 3.8 Total hours per semester | 125 |  |  |  |  |
| 3.9 Number of ECTS credits | 5 |  |  |  |  |

4. Prerequisites (if necessary)

| 4.1 curriculum | • Basic knowledege in algebra and calculus. |
| :--- | ---: | :--- |
| 4.2 competencies | • Competencies of using the above mentioned curricula. |

## 5. Conditions (if necessary)

| 5.1 for the course |
| :--- |
| 5.2 for the seminar /lab activities |

## 6. Specific competencies acquired

| • C1.1 Idetifying the notions, describing the theories and using the specific language |
| :--- | :--- | :--- |
| • C2.3 Applying the adequate analytical theoretical methods to a given problem |

7. Objectives of the discipline (outcome of the acquired competencies)

| 7.1 General objective of the discipline | Basic notions and methods în the context of analytic geometry |  |  |
| :---: | :---: | :---: | :---: |
| 7.2 Specific objective of the discipline | Classification of quadratic curves and surfaces |  |  |
| 8. Content |  |  |  |
| 8.1 Course |  | Teaching methods | Remarks |
| 1-2. Affine spaces <br> - Geometric vectors <br> - Vector space structure <br> - Cartesian coordinate fr <br> - Changing coordinates <br> - Affine subspaces in dim <br> - Hyperplanes | 2 and 3 | Exposition, proofs, examples | Two lectures |
| 3-4. Euclidean spaces <br> - Scalar product <br> - Gram matrix <br> - Orthonormal frames <br> - Gram-Schmidt process <br> - Applications <br> - Spectral Theorem |  | Exposition, proofs, examples | Two lectures |
| 5. Orientation <br> - Box product <br> - Cross product |  | Exposition, proofs, examples |  |


| - Properties <br> - Applications |  |  |
| :---: | :---: | :---: |
| 6. Affine maps <br> - Parallel projections and reflections <br> - Orthogonal projections and reflections | Exposition, proofs, examples |  |
| 7. Isometries <br> - Rotations in dimension 2 and 3 <br> - Displacements <br> - Classification of isometries in dimension 2 and 3 | Exposition, proofs, examples |  |
| 8-9. Quadratic curves <br> - Ellipse, hyperbola, parabola <br> - Canonical equations <br> - Relative position of a line <br> - Tangent lines | Exposition, proofs, examples | Two lectures |
| 10. Classification of quadrics (dimension 2 and 3 ) <br> - Reducing to canonical form <br> - Isometric classification of quadrics <br> - Affine classification of quadrics | Exposition, proofs, examples |  |
| 11-12. Quadratic surfaces <br> - Ellipsoid, Cone, Hyperboloid, Paraboloid <br> - Canonical equation <br> - Tangent planes | Exposition, proofs, examples | Two lectures |
| 13. Curvatures <br> - Curvature of curves <br> - Curvatures of surfaces | Exposition, proofs, examples |  |
| 14. Quaternions <br> - Algebraic description <br> - Quaternions and rotations | Exposition, proofs, examples |  |
| Bibliography <br> [1] I. Simion, Geometry - material de curs, 2024. <br> [2] P.A. Blaga, Geometrie - material de curs, 2019. <br> [3] M. Troyanov, Cours de géométrie, Lausanne, 2011. <br> [4] E. Sernesi, Linear Algebra. A geometric Approach (Translated by J. Montaldi), 2009. |  |  |
| 8.2 Seminar | Teaching methods | Remarks |
| 1-2. Affine spaces <br> - Geometric vectors <br> - Vector space structure <br> - Cartesian coordinate frames <br> - Changing coordinates <br> - Affine subspaces in dimension 2 and 3 <br> - Hyperplanes | Dialog, problem solving | Two tutorials |
| 3-4. Euclidean spaces <br> - Scalar product | Dialog, problem solving | Two tutorials |


| - Gram matrix <br> - Orthonormal frames <br> - Gram-Schmidt process <br> - Applications <br> - Spectral Theorem |  |  |
| :---: | :---: | :---: |
| 5. Orientation <br> - Box product <br> - Cross product <br> - Properties <br> - Applications | Dialog, problem solving |  |
| 6. Affine maps <br> - Parallel projections and reflections <br> - Orthogonal projections and reflections | Dialog, problem solving |  |
| 7. Isometries <br> - Rotations in dimension 2 and 3 <br> - Displacements <br> - Classification of isometries in dimension 2 and 3 | Dialog, problem solving |  |
| 8-9. Quadratic curves <br> - Ellipse, hyperbola, parabola <br> - Canonical equations <br> - Relative position of a line <br> - Tangent lines | Dialog, problem solving | Two tutorials |
| 10. Classification of quadrics (dimension 2 and 3) <br> - Reducing to canonical form <br> - Isometric classification of quadrics <br> - Affine classification of quadrics | Dialog, problem solving |  |
| 11-12. Quadratic surfaces <br> - Ellipsoid, Cone, Hyperboloid, Paraboloid <br> - Canonical equation <br> - Tangent planes | Dialog, problem solving | Two tutorials |
| 13. Curvatures <br> - Curvature of curves <br> - Curvatures of surfaces | Dialog, problem solving |  |
| 14. Quaternions <br> - Algebraic description <br> - Quaternions and rotations | Dialog, problem solving |  |
| Bibliography <br> [1] I. Simion, Geometry - material de curs, 2024. <br> [2] P.A. Blaga, Geometrie - material de curs, 2019. <br> [3] M. Troyanov, Cours de géométrie, Lausanne, 2011. <br> [4] E. Sernesi, Linear Algebra. A geometric Approach (Translated by J. Montaldi), 2009. |  |  |

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The material of this course serves other courses
- a deeper understanding of linear algebra
- affine transformations are necessary examples for a group theory course
- quadrics are necessary examples in calculus courses
- coordinate changes, projections, affine transformations are necessary for computer graphics
- Applications of the theory are presented wherever appropriate

10. Evaluation
$\begin{array}{|l|l|l|l|}\hline \text { Type of activity } & \text { 10.1 Evaluation criteria } & 10.2 \text { Evaluation methods } & \begin{array}{l}10.3 \text { Share in the } \\ \text { grade (\%) }\end{array} \\ \hline 10.4 \text { Course } & \begin{array}{l}\text { Critical grasp of the } \\ \text { learned material, ability to } \\ \text { use what was learned }\end{array} & \begin{array}{l}\text { Two written partial exams } \\ \text { and a written final exam }\end{array} & \begin{array}{l}30 \%, 30 \%, 40 \% \\ \text { respectively }\end{array} \\$\cline { 2 - 4 } \& Ability to use the theory <br> for solving problems\end{array}$\left.\quad \begin{array}{l}\text { Points during the tutorial } \\ \text { for active participation }\end{array} \quad \begin{array}{l}\text { Can lead up to one } \\ \text { extra point for the } \\ \text { final grade }\end{array}\right\}$

Date
21. February 2024

Lect. Dr. Iulian Simion

Signature of seminar coordinator
Lect. Dr. Iulian Simion

