in internation regarding the programme			
1.1 Higher education	Babeş-Bolyai University		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computers and Information Technology		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Information Engineering		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the di	scipl	ine (en)	Calculus 2				
(ro)		An	Analiză matematică 2				
2.2 Course coordinator		Tri	Trif Tiberiu-Vasile				
2.3 Seminar coordinator							
2.4. Year of study	1	2.5 Semester	2	2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory DF
2.8 Code of the discipline		MLE0071					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	3	3.3	2 S
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	42	3.6	28
				seminar/laboratory	
Time allotment:	•				hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					15
Evaluations					5
Other activities:					
3.7 Total individual study hours 80					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	•	Calculus 1 (Calculus in R)
4.2. competencies	•	Logical thinking abilities, problematisation

5. Conditions (if necessary)

5.1. for the course	Classroom with adequate infrastrusture
5.2. for the seminar /lab activities	Classroom with adequate infrastrusture

6. Specific competencies acquired

	• C1. Operating with the basics of Mathematical, Engineering and Computer Science
essional oetencies	• C1.2. Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
Prof comp	• C1.3. Building models for various components of computing systems
	• C1.5. Providing theoretical background for the characteristics of the designed systems
sal ıcies	• Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
Transver competen	• Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Getting to know the topolgy of the Euclidean space R ⁿ , the differential calculus of functions of several variables, as well as the different types of integrals for functions of several variables (multiple integrals, line integrals, surface integrals)
7.2 Specific objective of the discipline	• Presenting the basic notions and results concerning the topology of the Euclidean space R ⁿ
	• Presenting the basic notions and results concerning the differential calculus of functions of several variables
	• Presenting the different types of integrals for functions of several variables (multiple integrals, line integrals, and surface integrals)

8. Content		
8.1 Course	Teaching methods	Remarks
1. Topology in \mathbf{R}^n : the Euclidean space \mathbf{R}^n (the inner	Lecture, discussion,	[2], pp. 110 – 132
product, the Euclidean norm, the Euclidean distance),	proof,	pp. 159 – 185
the topological structure of \mathbf{R}^{n} (balls, neighbourhoods,	problematisation	[6], pp. 269 – 275
interior points, adherent points, boundary points, and		
limit points, open and closed sets). Sequences in \mathbf{R}^{n} :		
convergent and Cauchy sequences, characterization of		
adherent points, of limit points, and of closed sets by		
means of sequences.		
2. Compact sets in R ⁿ : definition of compact sets,	Lecture, discussion,	[2], pp. 132 – 142
examples of compact sets in \mathbf{R}^{n} , characterization of	proof,	pp. 185 – 187

compact sets in \mathbb{R}^n . Limits of vector functions of vector variable: definition of the limit, characterization of the limit by means of sequences, operations with functions having a limit.	problematisation	pp. 232 – 244 [6], pp. 290 – 301
3. Continuity of vector functions of vector variable: definition of the continuity at a point, characterization of the continuity by means of sequences, operations with continuous functions, the Weierstrass theorem. Linear mappings and their norm.	Lecture, discussion, proof, problematisation	[6], pp. 348 – 353
4. Differentiability in \mathbb{R}^n : the derivative of a vector function of a real variable, the mean value theorem for vector functions of a real variable. Differentiability of vector functions of vector variable (definition of the Frechet differential, continuity of Frechet differentiable functions, derivative vs differential for vector functions of a real variable).	Lecture, discussion, proof, problematisation	[4], pp. 393 – 404 pp. 413 – 417
5. Differentiability in \mathbb{R}^n : the directional derivative of a vector function of vector variable and its relationship with the Frechet differential, partial derivatives and their relationship with the Frechet differential. The chain rule, the differentiability of the inverse function.	Lecture, discussion, proof, problematisation	[4], pp. 343 – 350 pp. 417 – 422
6. Differentiability in \mathbb{R}^n : mean value theorems for functions of several variables. Functions of class \mathbb{C}^1 . The local inversion theorem, the implicit function theorem.	Lecture, discussion, proof, problematisation	[4], pp. 422 – 441
 7. Differentiability in Rⁿ: Lagrange multipliers, second order partial derivatives, the Schwarz and Young theorems concerning the mixed partial derivatives. Necessary and sufficient conditions for extrema. Higher order partial derivatives, Taylor's formula. 	Lecture, discussion, proof, problematisation	[4], pp. 361 – 384 pp. 441 – 445
8. The Riemann integral on a compact interval in \mathbb{R}^n : definition of the Riemann integral on a compact interval in \mathbb{R}^n , Riemann integrability tests on a compact interval in \mathbb{R}^n (the Heine, Cauchy, and Darboux tests). Computation of Riemann integrals on compact intervals by means of iterated integrals (the Fubini theorem).	Lecture, discussion, proof, problematisation	[5], pp. 192 – 198 [9]
9. The Riemann integral on bounded sets in \mathbb{R}^n : computation of Riemann integrals on bounded sets in \mathbb{R}^n by means of iterated integrals (the Fubini theorem). Change of variables in multiple integrals. Applications in physics of multiple integrals: centres of gravity and moments of inertia.	Lecture, discussion, proof, problematisation	[5], pp. 224 – 234 pp. 329 – 335 [9]
10. Vector functions of bounded variation: definition, examples, properties of the total variation. Additivity of the total variation with respect to the interval, the Jordan reprezentation theorem, computation of the total variation for functions of the class C^1 .	Lecture, discussion, proof, problematisation	[5], pp. 17, 21 [9], pp. 27 – 29 [10], pp. 114 – 115
11. Line integrals: paths, examples, equivalent paths, curves and oriented curves. First degree differential forms. Integration of first degree differential forms	Lecture, discussion, proof, problematisation	[5], pp. 135 – 145 [10], pp. 111 – 113 pp. 126 – 128

along a path (the line integral of the second kind),		[9]
mechanical work.		
12. Line integrals: the Green formula, integration of	Lecture, discussion,	[5], pp. 205 – 213
exact differential forms, the Leibniz-Newton formula,	proof,	[10], pp. 128 – 133
the Poincaré theorem concerning the integration of	problematisation	[9]
exact differential forms, mechanical work in the		
gravitational field.		
13. Surface integrals: parametrized surfaces, examples.	Lecture, discussion,	[5], pp. 306 – 314
Differential forms of the second degree and their	proof,	[9]
integrals over parametrized surfaces (surface integrals	problematisation	
of the second kind).		
14. The Stokes and the Gauss-Ostrogradski formulae.	Lecture, discussion,	[9]
	proof,	[5], pp. 351 – 355
	problematisation	

Bibliografie

- 1. BOBOC N.: Analiză matematică. Vol. 2, Editura Universității din București, 1998.
- BRECKNER W. W.: Analiza matematica. Topologia spatiului R^n. Universitatea din Cluj-Napoca, 1985.
- 3. BROWDER A.: Mathematical Analysis. An Introduction, Springer-Verlag, New York, 1996.
- 4. COBZAS ST.: Analiză matematică (Calcul diferential), Presa Universitară Clujeană, Cluj-Napoca, 1997.
- 5. Colectiv al catedrei de analiză matematică a Universității București: Analiză matematică. Vol. 2, Editura didactică și pedagogică, București, 1980.
- 6. FITZPATRICK P.M.: Advanced Calculus: Second Edition, AMS, 2006.
- 7. HEUSER H.: Lehrbuch der Analysis, Teil 1, 11. Auflage, B. G. Teubner, Stuttgart, 1994; Teil 2, 9. Auflage, B. G. Teubner, Stuttgart, 1995.
- 8. MARSDEN J. E., TROMBA A. J., WEINSTEIN A.: Basic Multivariable Calculus. Springer, 1993.
- 9. MEGAN M.: Bazele analizei matematice, Vol. I + Vol. II, Editura EUROBIT, Timisoara, 1997. Vol. III, Editura EUROBIT, Timisoara, 1998.
- 10. NICULESCU C. P.: Calculul integral al funcțiilor de mai multe variabile. Teorie și aplicații. Editura Universitaria, Craiova, 2002.
- 11. RUDIN W.: Principles of Mathematical Analysis, 2nd Edition, McGraw-Hill, New York, 1964.

12. WALTER W.: Analysis, I, II, Springer-Verlag, Berlin, 1990.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The Euclidean space R ⁿ : problems concerning the	Discussion,	The coordinator's problem
Euclidean space \mathbf{R}^{n} .	problematisation	set
2. Compact sets in \mathbf{R}^{n} : problems concerning compact	Discussion,	[3], pp. 57 – 60
sets in \mathbf{R}^{n} .	problematisation	
3. Limits of vector functions of vector variable,	Discussion,	[3], pp. 31 – 32
continuity of vector functions of vector variable.	problematisation	[7], pp. 45 – 46
Linear mappings and their norm: computation of the		
norm for some concrete linear mappings.		
4. Computation of directional derivatives, partial	Discussion,	[7], pp. 46–49
derivatives, and differentials for concrete functions.	problematisation	
5. Differentials: study of the Frechet differentiability	Discussion,	[7], pp. 50–56
for concrete functions. Applications to the chain rule.	problematisation	
6. Mean value theorems for functions of several	Discussion,	[7], pp. 56 – 69
variables. Difeomorphisms and implicit functions.	problematisation	
7. Extrema for functions of several variables, higher	Discussion,	[7], pp. 73 – 79

order partial derivatives.	problematisation	
8. Computation of double integrals over rectangles.	Discussion,	[7], pp. 84 – 86
Computation of triple integrals over parallelepipeds.	problematisation	p. 91
Double and triple integrals over normal domains with		
respect to an axis.		
9. Computation of double integrals by means of	Discussion,	[7], pp. 87 – 91
change of variables (polar coordinates).	problematisation	
10. Computation of triple integrals by means of	Discussion,	[7], pp. 92 – 94
change of variables (spherical coordinates, cylindrical	problematisation	
coordinates).		
11. Problems concerning functions of bounded	Discussion,	[1], pp. 5 – 44
variation. Line integrals of the first kind: definition,	problematisation	pp. 166 – 185
main theoretical results, computation of line integrals		[2], pp. 44 – 48
of the first kind along concrete paths.		[4], pp. 69 – 70
		[5], pp. 10 – 15
12. Line integrals of the second kind: computation of	Discussion,	[1], pp. 185 – 228
the integrals of certaind first degree differential forms	problematisation	[2], pp. 49 – 55
along concrete paths. Integration of some exact		pp. 107 – 109
differential forms. Applications to the Green formula.		[4], pp. 70 – 73
		p. 74
13. Computation of surface integrals of the first and of	Discussion,	[2], pp. 91 – 96
the second kind.	problematisation	pp. 101 – 104
		[4], p. 87 – 88
14. Problems concerning the Stokes and the Gauss-	Discussion,	[2], pp. 109 – 113
Ostrogradski formulae.	problematisation	

- Bibliografie
 - 1. BUCUR G., CÂMPU E., GAINA S.: Culegere de probleme de calcul diferential si integral, Vol. II, Editura Tehnica Bucuresti 1966. Vol. III, Editura Tehnica, Bucuresti, 1967.
 - 2. CĂTINAȘ D. et al.: Calcul integral. Culegere de probleme pentru seminarii, examene și concursuri. Editura U. T. Pres, Cluj-Napoca, 2000.
 - 3. DE SOUZA P. N., SILVA J.-N.: Berkeley Problems in Mathematics. Springer, 1998.
 - 4. DONCIU N., FLONDOR D.: Analiză matematică. Culegere de probleme. Vol. 2, Editura All, București, 1998.
 - 5. KACZOR W. J., NOWAK M. T.: Problems in Mathematical Analysis III: Integration. American Mathematical Society, 2003.
 - KEDLAYA K. S., POONEN B., VAKIL R.: The William Lowell Putnam Mathematical Competition 1985 – 2000. Problems, Solutions, and Commentary. The Mathematical Association of America, 2002.
 - TRIF T.: Probleme de calcul diferential si integral în R^n, Universitatea Babes-Bolyai, Cluj-Napoca, 2003.
 - 8. WREDE R., SPIEGEL M. R.: Advanced Calculus. Schaum's Outline Series. McGraw Hill, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The theme of this course (the topology of the Euclidian \mathbf{R}^n , the differential calculus of functions of several variables, functions of bounded variation, and various types of integrals for functions of several variables - multiple integrals, line integrals, and surface integrals) is provided in the study program of to all major

universities in Romania and the world. It is an indispensable part of preparing future math teachers, future mathematics researchers, and those working in other fields that directly apply mathematical methods.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in grade
10.4 Course	- knowing the main notions and		
	results	Midterm exam	50%
	- knowing the proofs of the main	(mandatory)	
	theoretical results		
	- applying the theoretical results in	Written exam at the end of	50%
	solving concrete problems	the semester	
10.5 Seminar/lab	- solving concrete problems by		
	using the theoretical results		
	presented at the course		
10.6 Minimum performance standards			
• The definitions of the basic notions, the statements of the main theoretical results, and the ability to			
apply these results in solving simple problems			

• Identifying and selecting methods to address simple concrete problems

Date

Signature of course coordinator

5.205

Signature of seminar coordinator

15.5.2022

Date of approval

Signature of the head of department

Prof. dr. Laura Dioşan

liosen

24.05.2022