SYLLABUS

1. Information regarding the programme				
1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computers and Information Technology			
1.5 Study cycle	Bachelor			
1.6 Study programme / Qualification	Information Engineering			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipl	2.1 Name of the discipline (en)		Physics			
(ro)		Fi	Fizică			
2.2 Course coordinator			Lect. Dr. Mihai Vasilescu			
2.3 Seminar coordinator		Le	Lect. Dr. Mihai Vasilescu			
2.4. Year of study I	2.5 Semester	Ι	2.6. Type of	E	2.7 Type of	Compulsory
			evaluation		discipline	DF
2.8 Code of the	MLE7003					
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	3	3.3 seminar/laboratory	1 LP
					1 S
3.4 Total hours in the curriculum	70	Of which: 3.5 course	42	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course su	pport	, bibliography, course n	otes		26
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, hor	newo	rk, papers, portfolios ar	nd ess	ays	6
Tutorship					3
Evaluations					8
Other activities:					-
3.7 Total individual study hours		55			
0.0 5 . 11		105			

3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

	5.1. for the course	Classroom equipped with blackboard,	computer and video projector
--	---------------------	-------------------------------------	------------------------------

5.2. for the seminar /lab	Classroom equipped with blackboard	
activities	General physics laboratory (mechanics, electricity, optics)	

6. Specific competencies acquired

	•	C1.1 Recognizing and describing specific concepts to calculability, complexity, programming paradigms and
		modeling of computing and communication systems
Professional	competencies	 C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 Building models for various components of computing systems C1.4 Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 Providing theoretical background for the characteristics of the designed systems
P	ies	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
Transversa	competenc	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Fixing theoretical and practical knowledge related to fundamental physical notions, understanding physical phenomena, forming practical skills, solving simple general physics problems
7.2 Specific objective of the discipline	 -Acquisition of theoretical and practical knowledge related to fundamental physical notions, physical quantities and units of measurement, the establishment of fundamental principles and laws of physics. -Explanation of physical phenomena in mechanics, electricity and optics and their mathematical description. -Learning the basic methods of solving physics problems. -Formation of practical skills for measuring physical quantities, interpreting experimental results and studying physical phenomena.

8. Content

8.1 Course	Teaching methods	Remarks
1. Kinematics of a material point: physical quantities,	Conversation; Description;	
vectors, velocity, acceleration. Uniform rectilinear	Problematization; Interactive, intuitive	
motion, uniformly varied motion and circular motion	presentations (animations and ppt)	
2. Dynamics. Principles of dynamics, types of forces,	Conversation; Description;	
dynamics theorems. Mechanical work and power.	Problematization; Interactive, intuitive	

Conservative and non-conservative forces	presentations (animations and ppt)			
3. Kinetic energy, potential energy, mechanical	Conversation; Description;			
energy, the law of conservation of energy. Linear	Problematization; Interactive, intuitive			
harmonic oscillations. Defining damped and forced	presentations (animations and ppt)			
oscillations				
4. Static material point. Concurrent forces. Reduction	Conversation; Description;			
of concurrent forces at the origin of a Cartesian	Problematization; Interactive, intuitive			
coordinate system. The moment of a force in relation	presentations (animations and ppt)			
to a point and an axis. Center of gravity. Material point				
equilibrium.				
5. Electrostatic field, Coulomb's law, electric field	Conversation; Description;			
intensity. Electricity, Gauss's law. Calculation of the	Problematization; Interactive, intuitive			
electric field of some load distributions.	presentations (animations and ppt)			
6. Mechanical work in the electrostatic field. Electric	Conversation; Description;			
potential. Relation between electric potential and field.	Problematization; Interactive, intuitive			
The potential for electric power distribution. The local	presentations (animations and ppt)			
(differential) form of the electrostatic equations.				
7. Electrostatic balance of charged conductors.	Conversation; Description;			
Electrostatic pressure. Electric field emission, ion	Problematization; Interactive, intuitive			
microscope, imaging method. Electrical capacity of	presentations (animations and ppt)			
conductors. The capacitor. Spherical and cylindrical				
capacitor.				
8. Electrostatic energy of discrete and continuous	Conversation; Description;			
distributions of electric charge. General expression of	Problematization; Interactive, intuitive			
electrostatic field energy. The energy of a charged	presentations (animations and ppt)			
capacitor.				
9. Electric current and conduction. Electric current	Conversation; Description;			
intensity, current density. Continuity equation. The	Problematization; Interactive, intuitive			
local form of Ohm's law.	presentations (animations and ppt)			
10. The classical theory of electrical conduction in	Conversation; Description;			
metals. The relationship between the electrical and	Problematization; Interactive, intuitive			
thermal conductivity of metals.	presentations (animations and ppt)			
11. Energy band structures in solids. Conductors,	Conversation; Description;			
semiconductors, insulators; Intrinsic semiconductors.	Problematization; Interactive, intuitive			
Extrinsic semiconductors	presentations (animations and ppt)			
12. Magnetic field. Creating the magnetic field.	Conversation; Description;			
Magnetic forces. Ampere's law. Electromagnetic	Problematization; Interactive, intuitive			
induction. Faraday's law	presentations (animations and ppt)			
	Conversation; Description;			
13. Introduction to optics. Concepts of light	Problematization; Interactive, intuitive			
throughout history. Fermat's principle	presentations (animations and ppt)			
	Conversation; Description;			
14. Imaging in optical systems in the Gaussian	Problematization; Interactive, intuitive			
approximation. Light scattering. Optical prism presentations (animations and ppt)				
Bibliography				
1. A. Hristev, Mecanica și acustica, Editura Didactică și pedagogică, București, 1982				
2. Al. Nicula, Gh. Cristea, S. Simon, Electricitate si Magnetism, Ed. Didactica si Pedagogica,				
Bucuresti, 1982				
3. S. E Fris, A. V. Timoreva, Curs de fizica generala. Vol. 2, Editura Tehnica, Bucuresti, 1964				
8.2 Seminar / laboratory	Teaching methods	Remarks		
S1. Discussing the methods of approaching physics	logical demonstration, inductive			

problems.	deductive methods
	logical demonstration, inductive
S2. Solving mechanics exercises	deductive methods
S3. Calculation of the electric field of some charge	logical demonstration, inductive
distributions; Calculation of the electric potential of	deductive methods, formal and
some electric charge distributions; problems	numerical calculation
S4. Applications of the Poisson and Laplace	logical demonstration, inductive
equations; Calculation of the electrostatic potential	deductive methods, formal and
energy of some electric charge distributions; problems	numerical calculation
S5. Calculation of the electrical potential of some	logical demonstration, inductive
isolated charged conductor systems. Capacitor	deductive methods, formal and
networks. Calculation of the electrical resistance of	numerical calculation
homogeneous and inhomogeneous conductors.	
S6. Solving direct current circuits; Calculating the	logical demonstration, inductive
efficiency of a direct current circuit. Problems	deductive methods
	logical demonstration, inductive
S7. Solving optical problems.	deductive methods
L1. Introduction; basic rules. Introduction to error	Active – participatory; students work in
calculation. Tables and graphs.	groups of 2-3, prepare their paper,
L2. Study of uniform motion.	choose the initial conditions and
L3. Study of uniformly accelerated motion.	perform experiments. The data are
L4. Determination of resistance by the Wheatstone	recorded in the laboratory notebooks,
bridge method	and the results, presented in the form of
L5. Determination of resistances by ammeter and	tables or graphs, are correlated with the
voltmeter method	theoretical or literature ones.
L6. Study of the temperature dependence of the	
resistivity of metals and semiconductors	
L7. Verification of practical knowledge	
Bibliography	

1. A. Hristev, Mecanica și acustica, Editura Didactică și pedagogică, București, 1982.

2. Romulus Tetean-Vințeler, Ioan Grosu: Electricitate și magnetism - probleme, NapocaStar 2002

3. Papers for laboratory work are posted on the internet

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is in line with what is studied in other university centers in the country and abroad. In order to adapt to the requirements imposed by the labor market, the content of the discipline was harmonized with the requirements imposed by the specifics of pre-university education, research institutes and the business environment

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The degree of assimilation of basic knowledge	exam (theory)	50%
10.5 Seminar/lab activities	S: Ability to use basic knowledge in problem solving	seminar activity exam (problems)	10% 15%

	L:Ability to use measuring devices, to perform experiments, to process data	essay laboratory colloquium	10% 15%		
10.6 Minimum performance standards					
Achievement of at least 50% of each evaluation criterion					

Date

Signature of course coordinator

Signature of seminar coordinator

N

W

16.05.2022

Date of approval

Signature of the head of department

Prof. dr. Laura Dioşan

liose

24.05.2022