
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş-Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computers and Information Technology

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Information Engineering

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Computer programming and programming languages

Programarea calculatoarelor si limbaje de programare

2.2 Course coordinator Prof. dr. Camelia Chira

2.3 Seminar coordinator Prof. dr. Camelia Chira

2.4. Year of study 1 2.5 Semester 1 2.6. Type of

evaluation

C 2.7 Type of

discipline

Compulsory

DF

2.8 Code of the

discipline

MLE5171

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3

seminar/laboratory

1 S

S LP

3.4 Total hours in the curriculum 70 Of which: 3.5 course 28 3.6

seminar/laboratory

42

Time allotment: hours

Learning using manual, course support, bibliography, course notes 18

Additional documentation (in libraries, on electronic platforms, field documentation) 18

Preparation for seminars/labs, homework, papers, portfolios and essays 14

Tutorship 12

Evaluations 18

Other activities:

3.7 Total individual study hours 80

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum 

4.2. competencies 

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es

C1.1 Recognizing and describing specific concepts to calculability, complexity, programming

paradigms and modeling of computing and communication systems

C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for

explaining the structure and the functioning of hardware, software and communication systems

C2.1 Describing the structure and operation of hardware, software and communication

components

C2.3 Construction of hardware and software components of computing systems using design

methods, languages, algorithms, data structures, protocols and technologies

C2.5 Implementation of hardware, software and communication components

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional

reputation

CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and

organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to software development processes

 What is programming: algorithm, program,

basic elements of the Python language, Python

interpreter, basic roles in software engineering

 How to write programs: problem statement,

requirements, feature driven development process

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

5.1. for the course  Projector

5.2. for the seminar /lab

activities

 Computers, Python programming language and environment

7.1 General objective of the

discipline

 To know the basic concepts of software engineering (design,

implementation and maintenance) and to learn Python programming

language

7.2 Specific objective of the

discipline

 To know the key concepts of programming

 To know the basic concepts of software engineering

 To gain understanding of basic software tools used in development of

programs

 To learn Python programming language and tools to develop, run, test and

debug programs

 To acquire and improve a programming style according to the best practical

recommendations

2. Procedural programming

 Compound types: list, tuple, dictionary

 Functions: test cases, definition, variable scope,

calling, parameter passing

 Test-driven development (TDD), refactoring

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

3. Modular programming

 What is a module: Python module definition,

variable scope in a module, packages, standard

module libraries

 Eclipse + PyDev

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

4. User defined types

 How to define new data types: encapsulation,

data hiding in Python, guidelines

 Introduction to object-oriented programming

 Exceptions

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

5. Object-oriented programming

 Abstract data types

 Implementation of classes in Python

 Objects and classes: classes, objects, fields,

methods, Python scope and namespace

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

6. Software design guidelines

 Layered architecture: UI layer, application

layer, domain layer, infrastructure layer

 How to organize source code: responsibilities,

single responsibility principle, separation of

concerns, dependency, coupling, cohesion

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

7. Program testing and inspection

 Testing methods: exhaustive testing, black box

testing, white box testing

 Automated testing, TDD

 File operations in Python

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

8. Recursion
 Notion of recursion

 Direct and indirect recursion

 Examples

 Computational complexity

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

9. Search algorithms

 Problem definition

 Search methods: sequential, binary

 Complexity of algorithms

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

10. Sorting algorithms

 Problem definition

 Sort methods: Bubble Sort, Selection Sort,

Insertion Sort, Quick Sort

 Interactive exposure

 Explanation

 Conversation

 Examples

 Complexity of algorithms  Didactical

demonstration

11. Problem solving methods (I)

 General presentation of the Backtracking,

Divide & Conquer methods

 Algorithms and complexity

 Examples

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

12. Problem solving methods (II)

 General presentation of the Greedy and

Dynamic Programming methods

 Algorithms and complexity

 Examples

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

13. Revision

 Revision of most important topics covered by

the course

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

14. Evaluation

Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, Third Edition, 2017.

2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.

3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.

http://refactoring.com/catalog/index.html

5. The Python Programming Language - https://www.python.org/

6. The Python Standard Library - https://docs.python.org/3/library/index.html

7. The Python Tutorial - https://docs.python.org/3/tutorial/

8.3 Laboratory Teaching methods Remarks

1. Simple Python programs  Interactive exposure

 Explanation

 Conversation

 Didactical

demonstration

2. Procedural Programming

3. Modular Programming

4. Feature-driven software development

5. Abstract data types

6. Design principles

7. Object-oriented programming

8. Program design. Layered architecture

9. Inspection and testing

10. Recursion. Complexity of algorithms

11. Search and sorting algorithms

12. Problem solving methods: Backtracking

13. Problem solving methods: Greedy

14. Practical test

Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, Third Edition, 2017.

2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.

3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.

http://refactoring.com/catalog/index.html

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html

5. The Python Programming Language - https://www.python.org/

6. The Python Standard Library - https://docs.python.org/3/library/index.html

7. The Python Tutorial - https://docs.python.org/3/tutorial/

8.2 Seminar Teaching methods Remarks

1. Simple Python programs. Procedural

Programming

 Interactive exposure

 Explanation

 Conversation

 Didactical

demonstration

2. Modular Programming. Feature-driven

software development.

3. Abstract data types. Design principles.

4. Object-oriented programming. Program

design. Layered architecture

5. Inspection and testing. Recursion.

Complexity of algorithms.

6. Search and sorting algorithms. Problem

solving methods: Backtracking.

7. Problem solving methods: Greedy.

Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, Third Edition, 2017.

2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.

3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.

http://refactoring.com/catalog/index.html

5. The Python Programming Language - https://www.python.org/

6. The Python Standard Library - https://docs.python.org/3/library/index.html

7. The Python Tutorial - https://docs.python.org/3/tutorial/

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.

 The course exists in the studying program of all major universities in Romania and abroad.
 The content of the course is considered by the software companies as important for average

programming skills.

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course The correctness and

completeness of the

accumulated knowledge

and the capacity to design

and implement correct

Python programs

Written exam 40%

10.5 Seminar/lab activities Be able to design,

implement and test a

Python program

Practical exam 30%

Correctness of laboratory Program and documentation 30%

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/

assignments and

documentation delivered

during the semester

10.6Minimum performance standards

 Each student has to demonstrate an acceptable level of knowledge and comprehension of the domain,

and the ability to coherently express the knowledge and use it to solve problems.

 A minimum grade of 5 should be obtained for the practical exam, the written exam and the final

grade.

Date Signature of course coordinator Signature of seminar coordinator

9.05.2022 Prof. dr. Camelia Chira Prof. dr. Camelia Chira

Date of approval Signature of the head of department

 Prof. dr. Laura Dioşan

24.05.2022

