1.1 Higher education	Babeş-Bolyai University		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computers and Information Technology		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Information Engineering		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		C Programming					
(ro)							
2.2 Course coordinator		Le	Lect. Dr. Ing. Horea Adrian Grebla				
2.3 Seminar coordinator		Le	Lect. Dr. Ing. Horea Adrian Grebla				
2.4. Year of study	2.5 Semester		2.6. Type of	С	2.7 Type of	DD	
			evaluation		discipline	Facultativ	
						e	
2.8 Code of the	MLR5076						
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	1	3.3	2 LP
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	14	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support	rt, bib	liography, course notes	5		10
Additional documentation (in libraries	s, on	electronic platforms, fie	eld doo	cumentation)	10
Preparation for seminars/labs, homew	ork, j	papers, portfolios and es	ssays		10
Tutorship					
Evaluations					
Other activities:					0
3.7 Total individual study hours 47					
3.8 Total hours 75					
per semester					
3.9 Number of 3					
ECTS credits					

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	٠	Multimedia projector
5.2. for the seminar /lab	•	Laboratory with caomputers having Linux and Windows operating
activities		systems

6. Specific competencies acquired

-	
al ies	• C3.1 Identifying classes of problems and solving methods that are specific to computing systems
rofession mpetenci	• C4.1 Identifying and describing technologies, programming environments and various concepts that are specific to programming engineering
P c0	• C4.5 Developing, implementing and integrating software solutions
S	• CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the
Transversal competencie	 CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	•	Acquiring the main entities and concepts with which it operates in the
discipline		standard C language.
	•	Mastering the basics of specific programming and using functions
7.2 Specific objective of the	•	Operators and expressions.
discipline	•	Control structures.
	•	Data structures
	•	IO operations with files.
	•	Pointers.
	•	Defining user functions.
	•	Memory classes and C preprocessor.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1 Introduction.	Presentation:	
• data types	description,	
• operators	explanations,	
• expressions	practical examples,	
• instructions	demonstrations,	

• IO operations with standard files	discussions on case
	studies.
Week 3 Control structures.	Presentation:
• if	description,
• switch	explanations,
• for	practical examples,
• while	demonstrations,
• break, continue	discussions on case
Week 5. Data structures.	studies.
• paintings	
• structures	
• union	
• tighten	
• bit fields	
 access to command line arguments 	
Week 7 Standard IO Library C; access to files.	Presentation:
• fopen, fclose	description,
• fgets, fprintf, fscanf	explanations,
• fread, fwrite, fseek	practical examples,
	demonstrations,
	discussions on case
	studies.
Week 9 Pointers.	Presentation:
 defining and operating with pointers 	description,
• malloc and free functions; dynamic variables.	explanations,
• pointer arithmetic	practical examples,
• equivalence between paintings and pointers	demonstrations,
• use of dynamic paintings	discussions on case
	studies.
Week 11 Defining user functions	Presentation:
• prototype functions	description,
• transmission of parameters	explanations,
• returned values	practical examples,
• recursion	demonstrations,
	discussions on case
	studies.
Week. 13-14. Memory classes and the preproces-	Presentation:
sor C	description,
• automatic, external, static memory classes	explanations,
• C preprocessor: #include, #define, #if, typedef	practical examples,
	demonstrations,
	discussions on case
	studies.
Bibliography	
1. BOIAN F, VANCEA A. IURIAN S Limbajul C, cule	gere de probleme. Lito UBB, 1992

- 2. COSTEA D. Inițiere în limbajul C. Ed. Teora, 1997.
- 3. KALICHARAN N. C By Example. Cambridge University Press, 1996
- 4. KERNINGHAN B.W., RITCHIE D.M The C Procramming Language -- Ansi C. Prentice Hall, 1988.
- 5. NEGRESCU L. Limbajele C și C++ pentru începători. Ecd. Albastră, Grupul Microinformatica, 2001
- 6. C Language Tutorial http://www.physics.drexel.edu/courses/Comp_Phys/General/C_basics/
- 7. C Tutorial http://www.cprogramming.com/tutorial/c-tutorial.html

8.2 Seminar / laboratory	Teaching methods	Remarks
Each course has two laboratories affected. In the	Presentation:	
within these, illustrative demonstrations are made	description,	
first and relevant examples on the course topic.	explanations,	
Then the students, alone or in teams, solve prob-	practical examples,	
lems received as homework in the laboratory or as	demonstrations,	
homework.	discussions on case	
	studies.	
Week 1 Introduction.	Presentation:	
• data types	description,	
• operators	explanations,	
• expressions	practical examples,	
• instructions	demonstrations,	
• IO operations with standard files	discussions on case	
	studies.	
Week 3-4 Control structures.	Presentation:	
• if	description,	
• switch	explanations,	
• for	practical examples,	
• while	demonstrations,	
• break, continue	discussions on case	
	studies.	
Week 5-6. Data structures.	Presentation:	
• paintings	description,	
• structures	explanations,	
• union	practical examples,	
• tighten	demonstrations,	
• bit fields	discussions on case	
 access to command line arguments 	studies.	
Week 7 Standard IO Library C; access to files.	Presentation:	
• fopen, fclose	description,	
• fgets, fprintf, fscanf	explanations,	
• fread, fwrite, fseek	practical examples,	
	demonstrations,	
	discussions on case	
	studies.	

Week 9 Pointers.	Presentation:
 defining and operating with pointers 	description,
• malloc and free functions; dynamic variables.	explanations,
• pointer arithmetic	practical examples,
• equivalence between paintings and pointers	demonstrations,
• use of dynamic paintings	discussions on case
	studies.
Week 11 Defining user functions	Presentation:
• prototype functions	description,
• transmission of parameters	explanations,
• returned values	practical examples,
• recursion	demonstrations,
	discussions on case
	studies.
Week 13-14. Memory classes and the preprocessor	Presentation:
С	description,
• automatic, external, static memory classes	explanations,
• C preprocessor: #include, #define, #if, typedef	practical examples,
	demonstrations,
	discussions on case
	studies.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- By mastering the theoretical-methodological concepts and approaching the practical aspects included in the discipline Operating Systems, students acquire a consistent knowledge, in accordance with the partial competencies required for possible occupations provided in Grid 1 RNCIS
- The course complies with the IEEE and ACM Curriculum Recommendations for Computer Science studies.
- The course exists in the curriculum of Romanian universities and faculties
- The content of the course is very well appreciated by the software companies that have as graduate employees of this course

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Mastery and correct	Last week exam	50%
	understanding of the issues		
	covered in the course		
	Correct problem solving		
10.5 Seminar/lab activities	Ability to solve practical		50%

	problems specific to the		
	course, directly on the		
	computer and in a limited		
	time Activity in the		
	laboratory		
10.6 Minimum performance standards			

Date

19.05.2022

Signature of course coordinator lect. Dr. Ing. Horea Adrian Grebla

Date of approval

Signature of the head of department

Signature of seminar coordinator

lect. Dr. Ing. Horea Adrian Grebla

Prof. dr. Laura Dioşan

Gliosen

24.05.2022