SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Doctoral School of Mathematics and Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Doctoral studies
1.6 Study programme /	TRAINING PROGRAMME BASED ON ADVANCED
Qualification	UNIVERSITY STUDIES

2. Information regarding the discipline

2.1 Name of the discipline MDE3145 Representation theory of finite groups								
2.2 Course coordinator prof. dr. Andrei Marcus								
2.3 Seminar coordinator prof. dr. Andrei Marcus								
2.4. Year of	1	2.5	1	2.6. Type of E 2.7 Type of Optional				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/ laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/ laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					54
Additional documentation (in libraries, on electronic platforms, field documentation)					50
Preparation for seminars/labs, homework, papers, portfolios and essays					60
Tutorship					10
Evaluations					10
Other activities: project					30
3.7 Total individual study hours 214					

3.7 Total individual study hours	214
3.8 Total hours per semester	250
3.9 Number of ECTS credits	10

4. Prerequisites (if necessary)

4.1. curriculum	 deep knowledge of bachelor level algebra, especially of the following subjects: algebraic structures linear algebra
4.2. competencies	 ability to perform symbolic calculations ability to operate with abstract concepts ability to do logical deductions ability to solve mathematics problems bases on aquired notions

5. Conditions (if necessary)

5.1. for the course	 blackboard, projector
5.2. for the seminar /lab	 blackboard
activities	

6. Specific competencies acquired

o. Specin	ne competencies acquired	
Professional competencies	 ability to perform symbolic calculations in various structures (groups, rings and fields, vector spaces, algebras, matrix algebras etc) ability to operate with abstract concepts ability to complex logical deductions ability to solve mathematics problems bases on aquired notions 	
Transversal competencies	 abstract reasoning applying mathematics in real life ability to solve problems 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Advanced knowledge on group theory. Ability to solve more difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of group theory students will aquire knowlegde regarding the structure of groups from various important classes. students solve problems, theoretical and practical, using instruments of modern algebra, regarding matrix representations and characters.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1. Algebras, subalgebras, homomorphisms,	Explanation, dialogue,	
ideals, factor algebras. Examples. Group algebra.	examples, proofs	
Week 2. Representations and modules. Simple	Explanation, dialogue,	
modules (irreducible representations) and	examples, proofs	
indecomposable modules.		
Week 3. Tensor products. Hopf algebras.	Explanation, dialogue,	
	examples, proofs	
Week 4. Semisimple algebras and modules. The	Explanation, dialogue,	
Jordan-Holder and Krull-Schmidt Theorems.	examples, proofs	
Week 5. Representations of finite groups. Characters.	Explanation, dialogue,	
Orthogonality. Character table computations.	examples, proofs	
Week 6. Products of characters. Induced characters.	Explanation, dialogue,	
Frobenius reciprocity.	examples, proofs	
Week 7. Burnside's Theorem.	Explanation, dialogue,	
	examples, proofs	
Week 8. Group algebras over fields of characteristic	Explanation, dialogue,	
p>0 and overdiscrete valuation rings	examples, proofs	
Week 9. Modular characters.	Explanation, dialogue,	
	examples, proofs	

Week 10. Representations of the symmetric group.	Explanation, dialogue,
	examples, proofs
Week 11. Clifford's Theorems. Projective	Explanation, dialogue,
representations	examples, proofs
Week 12. G-algebras and crossed products	Explanation, dialogue,
	examples, proofs

Bibliography

- [1] J.L. Alperin and R.B. Bell. *Groups and representations*. Springer-Verlag. 1995.
- [2] P. Etingof et al. Introduction to representation theory. American Mathematical Society 2011.

8.2 Seminar / laboratory	Teaching methods	Remarks
Week 1. Algebras, subalgebras, homomorphisms,	dialogue, examples, proofs	
ideals, factor algebras. Examples. Group algebra.		
Week 2. Representations and modules. Simple	dialogue, examples, proofs	
modules (irreducible representations) and		
indecomposable modules.		
Week 3. Tensor products. Hopf algebras.	dialogue, examples, proofs	
Week 4. Semisimple algebras and modules. The	dialogue, examples, proofs	
Jordan-Holder and Krull-Schmidt Theorems.		
Week 5. Representations of finite groups. Characters.	dialogue, examples, proofs	
Orthogonality. Character table computations.		
Week 6. Products of characters. Induced characters.	dialogue, examples, proofs	
Frobenius reciprocity.		
Week 7. Burnside's Theorem.	dialogue, examples, proofs	
Week 8. Group algebras over fields of characteristic	dialogue, examples, proofs	
p>0 and overdiscrete valuation rings		
Week 9. Burnside's Theorem.	dialogue, examples, proofs	
Week 10. Representations of the symmetric group.	dialogue, examples, proofs	
Week 11. Clifford's Theorems. Projective	dialogue, examples, proofs	
representations		
Week 12. G-algebras and crossed products	dialogue, examples, proofs	
D!h!:		

Bibliography

- 3. B.E. Sagan. The symmetric group. Springer-Verlag. 2001.
- 4. I.Assem. Algebres et modules. Univ. Ottawa. 1997.
- 5. T.Y. Lam. A first course in noncommutative rings. 2nd ed. Springer Verlag 2001.
- 6. M. Auslander, I. Reiten, S.O. Smalø. *Representation Theory of Artin Algebras*, Cambridge Univ. Press, 1995.
- 7. D.J. Benson, Representations and Cohomology, vol. I, II. Cambridge Univ. Press, 1998.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course exists in the curricula of many major universities;
- Groups are fundamental mathematical structures and have multiple applications in geometry, number theory, cryptography, chemistry and physics, as they measure symmetry.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	know the basic principles of the field;apply the new concepts	- written exam	75%		
10.5 Seminar/lab activities	- problem solving	- homeworks	25%		
10.6 Minimum performance standards					
> to aquire 5 points to pass the exam					

Date Signature of course coordinator Signature of seminar coordinator

30.06.2021 Prof.dr Andrei Mărcuș Prof.dr. Andrei Mărcuș Mam

Date of approval Signature of the head of doctoral school

07.07.2021 Prof. dr. Gabriela Czibula