SYLLABUS

1.1 Higher education	Babes-Bolyai University Cluj
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics and Computer Science in Hungarian
1.4 Field of study	Computer Science
1.5 Study cycle	master
1.6 Study programme /	Databases
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline				atabase Systems Ir	npleme	entation	
2.2 Course coordinator				Viorica Varga PhD			
2.3 Seminar coordinator				Viorica Varga PhD			
2.4. Year of	1	2.5	1	2.6. Type of	exam	2.7 Type of	required
study Semester evaluation discipline							
2.8 Code of the discipline MME8037							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 S
				seminar/laboratory	1 P
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:	Time allotment:				
Learning using manual, course suppor	t, bił	oliography, course notes	S		28
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					
Evaluations					2
Other activities:					
3.7 Total individual study hours 94					•
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• non
4.2. competencies	• developing applications on relational DBMSs (SQL, relational algebra -
	completed an introductory course on Databases)
	• sorting/searching techniques (quick/merge sorts, binary trees, hash tables -
	course on Design and Analysis of Algorithms)

6

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	• Visual Studio and Java on the computers in laboratories
activities	

6. Specific competencies acquired

al	have a good insight into how DBMSs function internally
ion enci	• understand how to analyse the performance of data-intensive systems
fess peto	• be familiar with a variety of programming techniques for large-scale data manipulation
Pro	• apply the insights achieved to build the major components of a mini-DBMS.
Transversal competencies	this course give the basics for query optimization

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The course objective is the presentation of data storage in databases, buffer management, index techniques, query processing and the overview of query optimization in relational databases. The students will be able to understand query processing in relational databases Implementation of a simple Database Management System (DBMS).
7.2 Specific objective of the discipline	 Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; File and System Structure: page layout and access; buffer management; file organizations (heap, sorted, clustered); row stores versus column stores; Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible, linear); multi-dimensional (UB-tree, k-d-b tree, R-tree) External Sorting: external n-way merge sort; sorting based on B+trees; Query Evaluation: Selection (index-based, hash-based, arbitrary selection predicates); projection (duplicate elimination; hash-based, sorting-based); joins (nested-loops, index nested, block nested, sortmerge, hash joins); set operations; aggregation; impact of buffering, pipelining, blocking; evaluation techniques in existing systems;

8. Content

8.1	Course	Teaching methods	Remarks
1.	The structure of the physical database. The	Presentation	
	structure of the magnetic disc. Optimization of		
	Disk-Block Access. RAID (redundant arrays of		
	independent disks)		
2.	Buffer-replacement policies	Presentation	
3.	File organization: fixed-length records, variable-	Presentation	

	-	
length records, sequential file, heap file, sorted file, multitable clustering file organization. Data dictionary storage		
 4. Ordered indices, dense and sparse indices and multilevel indices. Index Sequential Access Mechanism. Index update. Primary (clustering) and secondary (unclustering) indices. 	Presentation	
5. B+-tree index files. Structure of a B+-tree. Queries on B+-trees. Algorithm for update.	Presentation	
6. Algorithm for delete in B+-tree. B+-tree file organization.	Presentation	
 B-tree index files. Static hashing, hash indices. Dynamic hashing: extendable hashing, algorithms for update and delete in hash files. Comparison of ordered indexing and hashing. 	Presentation	
8. Multiple-key access: using multiple single-key indices, indices on multiple keys, bitmaps indices.	Presentation	
9. Overview of query processing. Measures of query cost. Basic algorithm for selection implementation. (linear search, binary search, using indices, selections involving comparison)	Presentation	
10. Algorithms for external sorting.	Presentation	
11. Algorithms for projection, set operations, outer join and aggregation implementation.	Presentation	
 12. Algorithms for join implementation (nested-loop join, block nested-loop join, indexed nested-loop join, merge join, hash join, cost of algorithms). 	Presentation	
13. hash join, cost of algorithms Implementation of pipelining.	Presentation	
 14. Overview of query optimization. Transformation of relational expressions, equivalence rules. Join ordering. Enumeration of equivalent expressions. Estimating statistics of expression results: selection size estimation, join size estimation, size estimation for other operations. Materialized view, it's maintenance and using it in query optimization. 	Presentation	
Bibliography		
[MUW00] H. Garcia-Molina, J. D. Ullman, J. Widom: Data Saddle River, New Jersey, 2008.	abase Systems - The Comp	lete Book, Prentice Hall Upper
[R02] R. Ramakrishnan: Database Management System	ns, WCB McGraw-Hill,	Boston, 2002.
[SKS06]A. Silberschatz, H. Korth, S. Sudarshan: <i>Da</i> 2006. [V06] V. Varga, <i>Interogarea hazelor de date distribui</i>	tabase System Concepts	, McGraw-Hill, New York,
[voo] v. varga, mierogarea bazelor de dale aistribuit	Taaahing mathada	Pomorka
1 Implementation of a complete single user		INCHIAINS
relational database management system. It		
involves a significant amount of adding. The		
project is highly structured but there is enough		
slack in the specification so that creativity is both		
allowed and required. It is recommended to		
implement a server component and a client one.		

	The client can be implemented as Windows	
	interface Web client or a command line parser	
2	The Record Management (RM) Component:	
2.	implement a set of functions for managing	
	unordered files of database records (There is	
	recommended to use binary files to implement	
	unordered files). You can consider fix length	
	unordered mes). Fou can consider my length	
	records, the management of variable length	
	delete operation of a record is the logical delete. It	
	delete operation of a record is the logical delete. It	
	store: the record is deleted or not. In order to not	
	store, the record is deleted of not. In order to not	
	everywrite them with new energy you can link the	
	deleted records in a stack or quoue. The top of the	
	deleted records in a stack of queue. The top of the	
	deleted records stack can be stored in the first	
	record of the file. You have to store the system	
	catalog. It will contain table names, index the	
	table is stored the structure of the table the	
	table is stored, the structure of the table, the	
	index file the second lack the type of it. You con	
	index file, the search key, the type of it. You can	
	implement the catalog in XNL file. In Catalog.xml	
2	you can find an example.	
3.	The Indexing (IX) Component: implement a	
	facility for building indexes on records stored in	
	unordered files. The indexing facility will be	
4	based on B+ trees of dynamic hashing.	
4.	<i>The Indexing (IX) Component:</i> implement a facility for building indexes on records stored in	
	activity for building indexies on records stored in	
	unordered mes. The indexing facility will be	
5	The System Management (SM) Components This	
3.	The System Management (SM) Component. This	
	part will implement various database and system	
	unities, including data definition commands (at	
	neimony loss and foreign loss constraint (neimony)	
	how have to be implemented for one or more	
	aclumns but foreign low is ontional to implement	
	for more than one column) index definition	
	commands and estalog management. For primary	
	key you will create index file sutematic. The	
	System Management component will roly on the	
	Becord Management and Indexing components	
	from Parts 1 and 2. It also will use a command line	
	normal and a graphical user interface	
6	The Query Language (QL) Components In this part	
0.	students will implement a query language which	
	consists of user level data manipulation	
	commands both guarias and undates (SOL Salast	
	Insert Undate Delete can be used). The Over	
	Language component will use a common line	
	narser or a graphical user interface. The queries	
	have to be processed using algorithms presented	
	at the course Features you have to implement in	
	at the course. I calutes you have to implement in	

Select statement: selection, projection, join of tables, aggregation, cumulative functions, (subquery, order by is optional for extra points).				
7. Create a database with 3 tables with the project.				
Update the data and run queries.				
Bibliography				
http://inst.eecs.berkeley.edu/~cs186/sp07/projects.html				
http://research.cs.wisc.edu/coral/mini_doc/minibase.html				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

•	This course is in concordance with the program of similar courses in other universities:
	http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=11782
	http://www.cs.ox.ac.uk/teaching/courses/databasesystemsimplementation/

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	exam	written test	30	
10.5 Seminar/lab	mini DBMS project	solve a problem with the	70	
activities		project		
10.6 Minimum performance standards				
working mini DBMS project				
> 50% in exam				

Date	Signature of course coordinator	Signature of seminar coordinator	
28 April 2020	assoc. prof. Viorica Varga	assoc. prof. Viorica Varga	
Date of approval	Signature of the head of department		

..... 30 April 2020.....

.....