SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics and Computer Science (in english)

2. Information regarding the discipline

2.1 N	lame of	the c	discip	line Computer System				ns Architecture		
2.2 Course coordinator				Lect. PhD. Coroiu Adriana Mihaela				riana Mihaela		
2.3 Se	eminar (coor	dinato	r	Lect. PhD. Coroiu Adriana Mihaela			riana Mihaela		
2.4.	Year	of	2	2.5	1	2.6. Type of E 2.7 Type of Compulsory				
study	y			Semester		evaluation discipline				

3. Total estimated time ((hours/semester of didactic activities)

3.1 Hours per week	4	Of	which:	3.2	2	3.3 seminar/laboratory	1 sem + 1 lab	
		coui	rse					
3.4 Total hours in	56	Of	which:	3.5	2	3.6 seminar/laboratory	28	
the curriculum		coui	rse		8			
Time allotment:					hou	hours		
Learning using r	nanual,	cou	rse supp	ort,	20			
bibliography, course	notes							
Additional docume	entation	(in	libraries,	on	10			
electronic platforms,	field docı	ımen	tation)					
Preparation for	seminars/	labs,	homew	ork,	20			
papers, portfolios and	d essays							
Tutorship					4			
Evaluations	Evaluations					14		
Other activities:								
3.7 Total individual study hours					32			
3.8 Total hours per semester					100			
3.9 Number of ECTS credits 4								

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	-

5. Conditions (if necessary)

5.1. for the course	⊚ projector
5.2. for the seminar /lab	Laboratory with computers

6. Specific competencies acquired

61.	C6.1 Identification of basic concepts and models for computer systems and
Professional	computer networks.
competencies	C6.2 Identification and description of the basic architectures for the organization
	and management of systems and networks.
6.2	CT1 Application of organized and efficient work rules, of responsible attitudes
Transversal	towards the didactic and scientific domain, for the creative exploitation of their
competencies	own potential according to the principles and rules of professional ethics
	CT3 Use of effective methods and techniques of learning, information, research
	and development of the capacity to exploit knowledge, to adapt to the
	requirements of a dynamic society and communication in Romanian language
	and in a foreign language

7. **Objectives of the discipline** (outcome of the acquired competencies)

7.1 General objective	Knowledge of the computer architecture models, processor				
of the	functioning, computer information representation usage				
discipline					
7.2 Specific objective	- Understanding by the students of the computer architecture models,				
of the	processor functioning, computer information representation usage				
discipline	- Initiation in assembler language programming, which will assure the				
	comprehension of the microprocessor architecture and functioning				
	- Understanding the basic functions of a computer's architectura				
	components and its native low-level workflow. Awareness of				
	architectural impact on designing and implementing high level				
	programming languages.				
	- Understanding the impact of the 80x86 processor architecture on				
	Windows functioning and limitations. Awareness of the triade				
	computer architecture – operating systems – programming languages				
	and their interactions as the basic core of Computer Science.				

8. Contents

8.1 Course	Teaching methods	Remarks
1. Data representation: elementary data, binary representation and placement orders, data organizing and storing. Character coding, signed and unsigned representation, complementary code, conversions.		
2. Computing systems architecture : organization of a CS, the central processing unit, the system clock, computer on n bits, the storage, peripheral devices.		
3. The 80x86 microprocessor's architecture – general view and structure. The Executive Unit (EU) of the 80x86 microprocessor: role and functions of the general EU registers.		
4. The 80x86 microprocessor's Eflags register. The flags role and classifications. Examples of usage and case studies in conjuction with basic arithmetic operations.	Exposure, description, explanation,	
5. Assembly language basic elements: the source line format, location counter, labels, expressions, accessing the operands, operators. Temporary non-destructive conversions and their specific operators.	examples, discussion of case studies	
6. Assembly language basic instructions: transfer instructions, signed and unsigned arithmetic operations, bitwise shifting and rotating, logical bitwise operations.		
7. The Bus Interface Unit (BIU) of the 80x86 microprocessor: the address registers, segment registers, machine instructions representation. The address computation mechanism, addressing modes, far addresses and near addresses. The offset specification formula on 32 bits vs. on 16 bits.		
8. Directives for defining segments, data definition directives, the EQU and INCLUDE directives. Data		

types and the impact of data type interpretations and little-endian representation on accessing memory data.

- **9. Conversions classification.** Signed vs unsigned conversions instructions. Non destructive operators vs. destructive instructions conversions in assembly language. Examples and case studies.
- **10. Overflow analysis**. the overflow concept in mathematics vs. practical memory overflow in a Computing System. The 80x86 architecture reactions to an overflow for each of the four basic arithmetic operations.
- **11. String instructions.** Conditional and unconditional jump instructions, looping instructions, string parsing in assembly language with non specific instructions. Specific strings instructions and their efficiency. Examples and case studies.
- **12. Windows Input/Output Function Calls** (printf and scanf) and **Text files** (fopen, fread, fscanf, fprintf, fclose) processing operations callable from NASM assembler
- **13. Multi-module programming** in assembly language. Import export mechanisms and shared resources between separate modules in assembly language.
- **14. Review of** theoretical aspects and **additional problems**: integration of the concepts already presented: data type, little-endian and directives with specific instructions for signed and unsigned representations.

Bibliography

- 1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.
- 2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.
- 3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea Programarea în limbaj de asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.
- 4. Randal Hyde The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare Continua si Invatamânt la Distanta, Cluj, 2002

- 6. Irvine, K.R., 2015. Assembly language for x86 processors.
- 7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.
- 8. Carter, P.A., 2004. PC Assembly Language. Github:
- (http://pacman128.github.io/static/pcasm-book.pdf)
- 9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.
- 10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer's manual. *Volume* 3B: System programming Guide, Part, 2, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pd f)

<u>f)</u>	m 1.	n i
8.2 Seminar/Laboratory	methods	Kemarks
Seminars: S1: Introduction to the IA-32 assembly language. Converting numbers between numbering bases 2, 10, 16. Representation of integer numbers in the computer's memory. S2: Signed and unsigned instructions. Arithmetic instructions (addition, substraction, multiplications and divisions). Signed and unsigned conversions. S3: Little-endian representation of data in memory. Conditional and unconditional jumps. String operations.	Exposure; Description; Explanation; Examples; Discussion of case studies; Practical projects.	Seminar is structured as 2 hour classes every second week
S4. Bitwise instructions (Bitwise logical operations, Shift and rotate operations)		

S5: Specific string instructions. Complex string problems.

S6: Library functions call (printf, scanf, fread, fscanf, fprintf, fclose)

S7: Multi-module programming in assembly language.

Laboratories

L1: Converting between different number bases. Bit. Sign bit. Complementary code. Representing signed integers. Tools for laboratories. Structure of a NASM program in assembly.

L2: Arithmetic expressions based on arithmetic instructions (additions, substractions, multiplications, divisions, little-endian, signed and unsigned conversions, declaring variables/constants)

L3: Complex arithmetic expressions and bitwise operations.

L4: Specific string operations (Instructions for comparisons, conditional jumps and repetitive loops and Instructions working on strings of bytes, words, doublewords and quadwords).

L5: Function calls: Function libraries, Using external functions. Call conventions,

Laboratory is structured as 2 hour classes every second week.

Laboratory problems assigned at a lab, have to be presented in the next lab.

Calling a system function.	
Standard msvcrt functions	
L6: Text file operations (open,	
write, read, close).	
L7: Multi-module programming	
in assembly language.	

Bibliography

- 1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.
- 2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.
- 3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea Programarea în limbaj de asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.
- 4. Randal Hyde The Art of Assembly Programming, No Starch Press, 2003. (http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/inde x.html)
- 5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare Continua si Invatamânt la Distanta, Cluj, 2002

- 6. Irvine, K.R., 2015. Assembly language for x86 processors.
- 7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.
- 8. Carter, P.A., 2004. PC Assembly Language. Github:

(http://pacman128.github.io/static/pcasm-book.pdf)

- 9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.
- 10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer's manual. *Volume* 3B: System programming Guide, Part, 2, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pd f)

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course exists in the studying program of all major universities in Romania and abroad; The content of the course is considered by the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
	Testing the basic principles of the domain and their interactions	Written exam	45 %		
10.4 Course	Verifying the understanding of the assembly language basic operations and mechanisms	Moodle midterm online multiple choice test	15 %		
	Application of the 32 bits assembly language principles for problem solving;	Average grade received for the laboratory work	15 %		
10.5 Lab/Seminar	Developing and implementing an assembly language code solution for a given problem	Practical exam	15 %		
activities	Evaluating the students activities during the seminaries	Seminar activity	10 %		
10.6 Minimum performance standards	 For participating at the written exam, a student must have at least 5 seminal attendances and 6 laboratory attendances. Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain that he/she is capable of expressing the acquired knowledge in a coherent form 				

Date Signature of course coordinator
14.04.2020 Lect. PhD Adriana Mihaela COROIU

ACoroiu

Signature of seminar coordinator Lect. PhD. Adriana Mihaela COROIU ACoroiu

Date of approval

Signature of the head of department Prof. PhD. Anca ANDREICA