SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babe -Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Probability Theory and Statistics							
2.2 Course coordinator Lect. Prof. PhD. Sanda Micula							
2.3 Seminar coordinator Lect. Prof. PhD. Sanda Micula							
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					7
Evaluations					5
Other activities:					-

3.7 Total individual study hours	55
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis	
	 Algebra 	
4.2. competencies	Logical thinking	
	 Average logical programming skills 	

5. Conditions (if necessary)

5.1. for the course	 Lecture room with large blackboard and video projector
5.2. for the seminar /lab	 For seminar: room with large blackboard

activities	For lab: Laboratory with computers having Matlab installed
------------	--

6. Specific competencies acquired

Professional competencies	 Understanding of basic concepts of mathematics and use them to problem-solving activities; Ability to understand and approach problems of modeling nature from other sciences Ability to work independently and/or in a team in order to solve problems in defined professional contexts
Transversal competencies	 Ability to analyze, synthesize and model phenomena and processes from various fields (economy, science, research, education) using adequate mathematical, statistical, computational and computer science methods; Improved Matlab programming skills; Ability to use and maintain educational software for primary education and gymnasium

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
1. Experiments, events, field of events, operations	Exposure: description,	
with events. Axiomatic definition of	explanation, examples,	
probability. Poincaré's formula. Classical	discussion, proofs	
definition of probability.		
2. Geometric probability. Buffon's needle	Exposure: description,	
problem. Conditional probability. Independent	explanation, examples,	
events. Total probability formula, Bayes'	discussion, proofs	
formula. Classical probabilistic models		
(binomial, multinomial, hypergeometric,		
Poisson, Pascal, geometric).		
3. Random variables and random vectors.	Exposure: description,	
Discrete random variables. Probability	explanation, examples,	
distribution function. Cumulative distribution	discussion, proofs	
function. Properties, examples.		
4. Discrete probability laws (Bernoulli, binomial,	Exposure: description,	
hypergeometric, Poisson, Pascal, geometric).	explanation, examples,	
Discrete random vectors. Operations with	discussion of case	
discrete random variables.	studies, proofs	
5. Continuous random variables. Probability	Exposure: description,	
density function. Continuous probability laws	explanation, discussion	
(uniform, normal, Gamma, exponential, Chi-	of case studies, proofs	
squared, Beta, Student, Cauchy, Fisher).		
Independent random variables. Functions of		
continuous random variables.		

6. Numerical characteristics of random variables. Expectation. Variance. Moments (initial, central, absolute). Covariance and correlation coefficient. Quantile, median, quartiles. Inequalities (Hölder, Schwartz, Cauchy-Buniakovski, Minkowsky, Markov, Chebyshev).	Exposure: description, explanation, examples, discussion, proofs	
7. Sequences of random variables. Convergence of sequences of random variables. Laws of large numbers. Limit theorems.	Exposure: description, explanation, examples, discussion, proofs, debate	
8. Descriptive statistics. Data collection. Graphical display of data. Frequency distribution and histograms. Parameters of a statistical distribution. Measures of central tendency. Measures of variation. Correlation and regression. Linear regression.	Exposure: description, explanation, discussion, debate	Video projector presentation
9. Sample theory. Samples. Sample functions (sample mean, sample variance, sample moments). Estimation theory. Unbiased estimators. Confidence intervals for estimating the population mean and the population variance. Confidence intervals for comparing two population means and two population variances.	Exposure: description, explanation, examples, discussion, debate	
10. Estimation theory. Properties of point estimators. Sufficient statistics. Likelihood function. The Rao-Blackwell theorem and minimum variance estimators. Fisher's information. Absolutely correct estimators. Methods of estimation. The method of moments estimator, the method of maximum likelihood estimator.	Exposure: description, explanation, examples, discussion, proofs	
11. Hypothesis testing. Rejection region. Type I errors. Significance testing and P-values. The Z-test and T (Student)-test for the mean. Examples.	Exposure: description, explanation, examples, discussion, debate	
12. The Chi-square-test for variance. The F-test for the ratio of variances. Tests for the difference of means. Examples. Robust tests.	Exposure: description, explanation, examples, discussion, debate	
13. Type II errors and the power of a test. Most powerful tests and the Neyman-Pearson lemma. Uniformly most powerful tests. Examples.	Exposure: description, explanation, examples, discussion	
14. The Chi-square-test for several characteristics. The Chi-square-test for contingency tables.	Exposure: description, explanation, examples, discussion	

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Agratini, O., Blaga, P., Coman, Gh., Lectures on Wavelets, Numerical Methods and Statistics, Casa Cartii de Stiinta, Cluj-Napoca, 2005.
- 3. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 4. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 5. Blaga, P., Radulescu, M., Calculul probabilitatilor, Universitatea "Babes-Bolyai" Cluj-Napoca, 1987.
- 6. Feller, W., An introduction to probability theory and its applications, Vol.I-II, John Wiley, New

York, 1957, 1966.

- 7. Iosifescu, M., Mihoc, Gh., Theodorescu, R., Teoria probabilitatilor si statistica matematica, Editura Tehnica, Bucuresti, 1966.
- 8. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

Engineering and the Computing Sciences, 51d E		
8.2 Seminar	Teaching methods	Remarks
1. Euler's Gamma and Beta functions. Properties.	Explanation, discussion, proofs, individual and group work	The seminar is structured as 2 hours per week, every other week
 Classical probability problems. Geometric probability. Conditional probability. Independent events. Bayes' formula. 	Explanation, discussion, examples, individual and group work	
3. Classical probabilistic models.	Explanation, discussion, examples, synthesis, individual and group work	
4. Discrete random variables and random vectors. Operations with discrete random variables.	Explanation, discussion, examples, proofs, individual and group work	
Continuous random variables and random vectors. Functions of continuous random variables.	Explanation, discussion, examples, proofs, individual and group work	
6. Numerical characteristics of random variables.	Explanation, discussion, proofs, individual and group work	
7. Inequalities. Sequences of random variables.	Explanation, discussion, proofs, individual and group work	
8.3 Laboratory	Teaching methods	Remarks
1. Introduction to Matlab, I.	Description, explanation, discussion, examples, individual and group work	
2. Introduction to Matlab, II.	Description, explanation, discussion, examples, individual and group work	
3. Discrete random variables. Probability distribution function.	Description, discussion, examples, individual and group work	
4. Continuous random variables. Probability density function. CDF and Inverse CDF.	Description, discussion, examples, individual and group work	
PDF and CDF of continuous distributions. Random number generators.	Description, discussion, examples, individual and group work	
6. Numerical characteristics of random variables.	Description, discussion, examples, individual work	
7. Overview of Statistics Toolbox features. Samples.	Description, discussion, examples, individual and group work	

8. Descriptive Statistics. Grouped frequency	Description, discussion,
distribution, graphical display of data.	examples, individual and
Statistical measures.	group work
9. Correlation and regression.	Description, discussion,
	examples, individual and
	group work
10. Confidence intervals for one population.	Description, discussion,
	examples, individual and
	group work
11. Confidence intervals for comparing two	Description, discussion,
populations.	examples, individual and
	group work
12. Hypothesis and significance testing for one	Description, discussion,
population.	examples, individual and
	group work
13. Hypothesis and significance testing for	Description, discussion,
comparing two populations.	examples, individual and
	group work
14. Lab exam.	Individual work

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for pursuing a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Probability Theory and Mathematical Statistics; be able to apply correctly the course concepts on various applications problem solving 	Written exam on problems only (a sheet with the main probabilistic and statistical formulas is available)	50%
10.5 Seminar activities	 be able to apply course concepts and techniques on practical problems be able to choose and apply the right 	 participation in discussing and solving problems throughout the semester additional documentation individual presentation of 	25%

	probabilistic or statistical	solutions	
	model to various practical	- solving bonus problems	
	problems		
	- problem solving		
10.6 Lab activities	- be able to implement	- participation in discussing	25%
	course concepts and	and solving problems	
	algorithms in Matlab	throughout the semester	
	- be able to solve	- lab exam (numerical	
	numerical statistical	statistical applications)	
	problems in Matlab		
10.7 Minimum performance standards			

A grade of 5 or above (on a scale from 1 to 10) on each of the three activities mentioned above (written test, seminar evaluation, lab evaluation)

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. Prof. PhD. Sanda Micula	Lect. Prof. PhD. Sanda Micula
Date of approval	Signature	e of the head of department