Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Curriculum for
Academic Year 2012/2013

Mathematics

Semester 1

Code Subject Hours: C+S+L+P Form of Exam. Credits Syllabus
MLR0019 Algebra 1 (Linear Algebra) 2+2+0+0 E 6 cr. Romanian Hungarian
MLR0023 Mathematical Logic 2+2+0+0 C 6 cr. Romanian Hungarian
MLR0001 Mathematical Analysis 1 2+2+0+0 E 6 cr. Romanian Hungarian
MLR0013 Analytical Geometry 2+2+0+0 E 6 cr. Romanian Hungarian
MLR5005 Fundamentals of Programming 2+2+2+0 C 6 cr. Romanian Hungarian
YLU0011 Sports (1) 0+2+0+0 C -
MLX2081 Foreign Language (1) 0+2+0+0 C 3 cr.
TOTAL 10+14+2+0=26   33 cr.
Facultative Courses
MLR0018 Basic Math 2+1+0+0 C 3 cr. Romanian
MLM7006 Basic Computer Science (in Hungarian) 2+0+2+0 C 4 cr. Hungarian

Package with subjects to foreign language (1)
LLU0011 English Language (1) 0+2+0+0 3 cr.
LLU0021 French language (1) 0+2+0+0 3 cr.
LLU0031 German language (1) 0+2+0+0 3 cr.

Semester 2

Code Subject Hours: C+S+L+P Form of Exam. Credits Syllabus
MLR0021 Algebra 2. (Basic Algebraic Structures) 2+2+0+0 E 5 cr. Romanian Hungarian
MLR0006 Analysis 2 (Differenzialrechnung im R^n) 2+2+0+0 E 5 cr. Romanian Hungarian
MLR0015 Geometry 2 (Affine Geometry) 2+2+0+0 C 5 cr. Romanian Hungarian
MLR0009 Differential Equations 2+1+1+0 E 5 cr. Romanian Hungarian
MLR5006 Object-Oriented Programming 2+1+1+0 E 6 cr. Romanian Hungarian
MLR5022 Data Structures and Algorithms 2+1+0+0 C 4 cr. Romanian Hungarian
YLU0012 Sports (2) 0+2+0+0 C -
MLX2082 Foreign Language (2) 0+2+0+0 C 3 cr.
TOTAL 12+13+2+0=27   33 cr.
Facultative Courses
MLR2002 Advanced Methods of Solving the Pproblems of Mathematics and Computer Science 2+0+0+0 C 3 cr. Romanian

Package with subjects to foreign language (2)
LLU0012 English Language (2) 0+2+0+0 3 cr.
LLU0022 French language (2) 0+2+0+0 3 cr.
LLU0032 German language (2) 0+2+0+0 3 cr.

Semester 3

Code Subject Hours: C+S+L+P Form of Exam. Credits Syllabus
MML0014 Number Theory 2+2+0+0 E 6 cr. Romanian Hungarian
MMA0029 Mathematical Analysis 3 (Integral Calculus in R^n) 2+2+0+0 C 6 cr. Romanian Hungarian
MMG0013 Geometry 3 (Differential Geometry of Curves and Surfaces) 2+2+0+0 E 6 cr. Romanian Hungarian
MMC0001 Complex Analysis 2+2+0+0 E 6 cr. Romanian Hungarian
MMN0001 Mathematical Software 2+0+2+0 C 6 cr. Romanian Hungarian
TOTAL 10+8+2+0=20   30 cr.

Semester 4

Code Subject Hours: C+S+L+P Form of Exam. Credits Syllabus
MMN0002 Numerical Analysis 2+1+2+0 E 7 cr. Romanian Hungarian
MMA0005 Real Functions 2+2+0+0 C 6 cr. Romanian Hungarian
MMP0001 Probability Theory 2+2+0+0 E 6 cr. Romanian Hungarian
MMM0010 Theoretical Mechanics 2+1+1+0 E 6 cr. Romanian Hungarian
MX10101 Optional course 1 2+1+0+2 C 5 cr.
TOTAL 10+7+3+2=22   30 cr.
Other Compulsory Courses
MPM0002 Practice-Training 0+0+0+6.5 C 6 cr.

Subjects for optional course 1
Package with subjects in Romanian language
MML0009 Supplement of Algebra 2+1+0+2 5 cr.
MMA0013 Supplement of Mathematical Analysis 2+1+0+2 5 cr.
MMA0012 Convex Functions 2+1+0+2 5 cr.
MML0018 Graphs and Combinatorics 2+1+0+2 5 cr.
Subject in Hungarian language
MMG0010 Projective Geometry 2+1+0+2 5 cr.
MMG0011 Hyperbolic Geometry 2+1+0+2 5 cr.
MMC0002 Geometric Function Theory 2+1+0+2 5 cr.
MML0018 Graphs and Combinatorics 2+1+0+2 5 cr.

Semester 5

Code Subject Hours: C+S+L+P Form of Exam. Credits Syllabus
MMA0007 Functional Analysis 2+2+0+0 C 6 cr. Romanian Hungarian
MMP0002 Mathematical Statistics 2+2+1+0 E 7 cr. Romanian Hungarian
MME0004 Partial Differential Equations 2+2+0+0 E 6 cr. Romanian Hungarian
MMM0002 Astronomy 2+1+1+0 E 6 cr. Romanian Hungarian
MX10102 Optional course 2 2+1+0+0 C 5 cr.
TOTAL 10+8+2+0=20   30 cr.
Facultative Courses
MMH0002 Typesetting of Mathematical Documents with LaTeX 1+0+1+0 C 3 cr. Romanian

Subjects for optional course 2
Package with subjects in Romanian language
MME0014 Special Topics in Ordinary Differential Equations 2+1+0+0 5 cr.
MMP0010 Applications of Numerical Calculus 2+1+0+0 5 cr.
Subject in Hungarian language
MMM0003 Analytical Mechanics 2+1+0+0 5 cr.
MME0015 Applied Mathematics in Economy 2+1+0+0 5 cr.

Semester 6

Code Subject Hours: C+S+L+P Form of Exam. Credits Syllabus
MMA0018 Optimization techniques 2+1+0+1 E 6 cr. Romanian Hungarian
MX10103 Optional course 3 2+1+0+2 E 7 cr.
MX10104 Optional course 4 2+1+0+2 C 7 cr.
MX10105 Optional course 5 2+1+0+2 C 7 cr.
MX10106 Optional course 6 1+0+0+0 C 3 cr.
TOTAL 9+4+0+7=20   30 cr.
Other Compulsory Courses
MMZ0001 Work for Graduation Project/Diploma Thesis 0+0+2+0 C 5 cr.
MMZ0004 Work for Graduation Project/Diploma Thesis 0+0+0+5 C -

Subjects for optional course 3
Package with subjects in Romanian language
MMG0007 Complements of Geometry 2+1+0+2 7 cr.
MMG0011 Hyperbolic Geometry 2+1+0+2 7 cr.
Subject in Hungarian language
MME0002 Dynamical Systems 2+1+0+2 7 cr.
MME0003 Mathematical Modelling 2+1+0+2 7 cr.
Subjects for optional course 4
Package with subjects in Romanian language
MMP1011 Mathematics of Financial Operations 2+1+0+2 7 cr.
MMM0005 Special Topics in Astronomy 2+1+0+2 7 cr.
MME0003 Mathematical Modelling 2+1+0+2 7 cr.
Subject in Hungarian language
MMP0011 Numerical Computation in Applied Mathematics 2+1+0+2 7 cr.
MMP0004 Stochastic Processes and Fractals 2+0+1+2 7 cr.
Subjects for optional course 5
Package with subjects in Romanian language
MMC0002 Geometric Function Theory 2+1+0+2 7 cr.
MMC0004 Supplement of Complex Analysis 2+1+0+2 7 cr.
Subject in Hungarian language
MML0011 Special Topics in Algebra 2+1+0+2 7 cr.
MML0010 Galois Theory for Algebraic Equations 2+1+0+2 7 cr.
MMA0016 Special Topics in Mathematical Analysis 2+1+0+2 7 cr.
Subjects for optional course 6
Package with subjects in Romanian language
MMH0001 The History of Mathematics 1+0+0+0 3 cr.
MIA0001 History of Computer Science 1+0+0+0 3 cr.
MMZ0003 Methodology Documentation and Prepare a Scientific Paper 1+0+0+0 3 cr.
Subjects in Hungarian language
MMH0001 The History of Mathematics 1+0+0+0 3 cr.
MIA0001 History of Computer Science 1+0+0+0 3 cr.
MMZ0003 Methodology Documentation and Prepare a Scientific Paper 1+0+0+0 3 cr.